首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We demonstrate hexagonal boron nitride (h-BN) epitaxial growth on Ni(1 1 1) substrate by molecular beam epitaxy (MBE) at 890 °C. Elemental boron evaporated by an electron-beam gun and active nitrogen generated by a radio-frequency (RF) plasma source were used as the group-III and -V sources, respectively. Reflection high-energy electron diffraction revealed a streaky (1×1) pattern, indicative of an atomically flat surface in the ongoing growth. Correspondingly, atomic force microscopy images exhibit atomically smooth surface of the resulting h-BN film. X-ray diffraction characterization confirmed the crystallinity of the epitaxial film to be h-BN, and its X-ray rocking curve has a full-width at half-maximum of 0.61°, which is the narrowest ever reported for h-BN thin film. The epitaxial alignments between the h-BN film and the Ni substrate were determined to be [0 0 0 1]h−BN∥[1 1 1]Ni, [1 1 2¯ 0]h−BN∥[1¯ 1 0]Ni, and [1 1¯ 0 0]h−BN∥[1¯ 1¯ 2]Ni.  相似文献   

2.
Redistribution behavior of magnesium (Mg) in the N-terminated (1 1¯ 0 1) gallium nitride (GaN) has been investigated. A nominally undoped GaN layer was grown on a heavily Mg-doped GaN template by metalorganic vapor-phase epitaxy (MOVPE). Mg dopant profiles were measured by secondary ion mass spectrometry (SIMS) analysis. A slow decay of the Mg concentration was observed in the nominally undoped GaN layer due to the surface segregation. The calculated decay lengths of the (1 1¯ 0 1) GaN are ∼75–85 nm/decade. These values are shorter than the decay length determined in the sample grown on the Ga-terminated (0 0 0 1) GaN. This result indicates that Mg exhibited weak surface segregation in the (1 1¯ 0 1) GaN as compared to the (0 0 0 1) GaN. The weak surface segregation is in agreement with the high efficiency of Mg incorporation on the (1 1¯ 0 1) face. The high density of hydrogen was obtained in the (1 1¯ 0 1) GaN, which might enhance the Mg incorporation.  相似文献   

3.
We report on the MOCVD growth of InN buffer layers on sapphire substrate for InN growth. The approach used assumes that an optimized InN buffer layer has to exhibit at least the same crystalline quality and sapphire surface coverage than the GaN buffer layers allowing to grow high crystalline quality GaN on sapphire. The buffer layers were characterized by AFM and GID measurements. Sapphire nitridation was investigated: it has a strong influence on in-plane crystalline quality. Two kinds of buffer layers were optimized according to the GaN buffer layer specifications: one of them only presented In droplets at its surface. It was shown that the small amount of In droplets increases the adatoms mobility of the main layer overgrown, leading to a 25% decrease of its in-plane mosaicity, compared to InN films directly grown on sapphire. To achieve a same improvement on InN buffer layer free of In droplets, the InN main layer growth temperature had to be increased from 550 °C. to 600 °C.  相似文献   

4.
GaN films and AlGaN/GaN heterostructures grown on vicinal sapphire (0 0 0 1) substrates by metalorganic chemical vapor deposition (MOCVD) are investigated. It is found that surface morphologies of GaN films depend on the vicinal angle, however, they are not sensitive to the inclination directions of the substrate. The optimized vicinal angle for obtaining excellent surface morphology is around 0.5°. This conclusion is also confirmed by characterizing the electrical property of two-dimensional electron gas (2DEG) in the AlGaN/GaN heterostructure.  相似文献   

5.
Indium nitride (InN) films have been grown on lattice matched europium nitride (EuN) buffer layers by pulsed laser deposition (PLD) and their structural properties have been investigated. It has been revealed that the growth of EuN films on Al2O3 (0 0 0 1) substrates leads to the formation of polycrystalline EuN films, whereas epitaxial EuN (1 1 1) films grow on MgO (1 1 1) substrates at 860 °C. By using the EuN (1 1 1) films as buffer layers for InN growth, we have succeeded in the epitaxial growth of InN (0 0 0 1) films at 490 °C with an in-plane epitaxial relationship of [1 1 2¯ 0]InN∥[1 1¯ 0]EuN∥[1 1¯ 0]MgO, which minimized the lattice mismatch between InN and EuN.  相似文献   

6.
The activation energies for Ga and N desorption from a GaN surface were calculated using the density functional theory to understand the detailed decomposition process of the hydrogen terminated GaN(0 0 0 1) Ga and N surfaces under a hydrogen atmosphere. It was found that the Ga atoms on the hydrogen terminated GaN(0 0 0 1) Ga surface desorbed as GaH molecules from the surface while the N atoms on the hydrogen terminated GaN(0 0 0 1) N surface desorbed as NH3 molecules from the surface. The desorption energies of GaH and NH3 on the hydrogen terminated surface were more consistent with the previous experimental values than those on the ideal surface. These results suggest that the initial surface structure of the GaN(0 0 0 1) surface is terminated with hydrogen.  相似文献   

7.
GaN epilayers are grown on (1 1 1) oriented single crystal diamond substrate by ammonia-source molecular beam epitaxy. Each step of the growth is monitored in situ by reflection high energy electron diffraction. It is found that a two-dimensional epitaxial wurtzite GaN film is obtained. The surface morphology is smooth: the rms roughness is as low as 1.3 nm for 2×2 μm2 scan. Photoluminescence measurements reveal pretty good optical properties. The GaN band edge is centred at 3.469 eV with a linewidth of 5 meV. These results demonstrate that GaN heteroepitaxially grown on diamond opens new rooms for high power electronic applications.  相似文献   

8.
We report on the use of dimethylhydrazine (DMHy) and tertiarybuthylhydrazine (TBHy), as alternative nitrogen precursor for GaN low-temperature growth, as well as to improve the InN growth rate. Lowering the GaN growth temperature, would allow growing InN/GaN heterostructures by MOVPE, without damaging the InN layers. Increasing the low InN MOVPE growth rate is of major importance to grow reasonably thick InN layers. In this respect, triethylindium (TEIn) was also used as an alternative to trimethylindium (TMIn).  相似文献   

9.
The influence of temperature on selective area (SA) InAs nanowire growth was investigated for metal-organic vapor phase epitaxy (MOVPE) using N2 as the carrier gas and (1 1 1) B GaAs substrates. In contrast to the growth temperature range – below 600 °C – reported for hydrogen ambient, the optimal growth temperature between 650 and 700 °C was 100 K higher than the optimal ones for H2 carrier gas. At these temperatures, nanowires with aspect ratios of about 80 and a symmetric hexagonal shape were obtained. The results found are attributed to the physical and chemical properties of the carrier gas.  相似文献   

10.
GaN nanorods were grown on Si (0 0 1) substrates with a native oxide layer by molecular beam epitaxy. The changes in the morphologies and their effects on the field emission characteristics of GaN nanorods were investigated by varying growth conditions, namely, growth time of low-temperature GaN buffer layer, growth time of GaN nanorods, Ga flux during growth of GaN nanorods, and growth temperature of GaN nanorods. GaN nanorods with a low aspect ratio measured by diode configuration showed better field emission characteristics than those with a high aspect ratio, which may be due to the effects of screening and the surface depletion layer. In addition, the distance between the GaN nanorods and the anode played an important role in the field emission characteristics such as turn-on field, field enhancement factor, and field distribution on the emitter surface.  相似文献   

11.
We present MOVPE-grown, high-quality AlxGa1−x N layers with Al content up to x=0.65 on Si (1 1 1) substrates. Crack-free layers with smooth surface and low defect density are obtained with optimized AlN-based seeding and buffer layers. High-temperature AlN seeding layers and (low temperature (LT)/high temperature (HT)) AlN-based superlattices (SLs) as buffer layers are efficient in reducing the dislocation density and in-plane residual strain. The crystalline quality of AlxGa1−xN was characterized by high-resolution X-ray diffraction (XRD). With optimized AlN-based seeding and SL buffer layers, best ω-FWHMs of the (0 0 0 2) reflection of 540 and 1400 arcsec for the (1 0 1¯ 0) reflection were achieved for a ∼1-μm-thick Al0.1Ga0.9N layer and 1010 and 1560 arcsec for the (0 0 0 2) and (1 0 1¯ 0) reflection of a ∼500-nm-thick Al0.65Ga0.35N layer. AFM and FE-SEM measurements were used to study the surface morphology and TEM cross-section measurements to determine the dislocation behaviour. With a high crystalline quality and good optical properties, AlxGa1−x N layers can be applied to grow electronic and optoelectronic device structures on silicon substrates in further investigations.  相似文献   

12.
Since a few years, a lot of research efforts have been devoted to InN, the least known of the semiconducting group-III nitrides. Most of the samples available today have been grown using the molecular beam epitaxy technique, and fewer using the metal organic vapor phase epitaxy (MOVPE) method. Whatever the method, the growth of InN is extremely challenging, in particular due to the fact that no lattice matched substrate is available.  相似文献   

13.
Structural stability of GaN(0 0 0 1) under Ga-rich conditions is systematically investigated by using our ab initio-based approach. The surface phase diagram for GaN(0 0 0 1) including (2×2) and pseudo-(1×1) is obtained as functions of temperature and Ga beam equivalent pressure by comparing chemical potentials of Ga atom in the gas phase with that on the surface. The calculated results reveal that the pseudo-(1×1) appearing below 684–973 K changes its structure to the (2×2) with Ga adatom at higher temperatures beyond 767–1078 K via the newly found (1×1) with two adlayers of Ga. These results are consistent with the stable temperature range of both the pseudo-(1×1) and (2×2) with Ga adatom obtained experimentally. Furthermore, it should be noted that the structure with another coverage of Ga adatoms between the (1×1) and (2×2)-Ga does not appear as a stable structure of GaN(0 0 0 1). Furthermore, ghost island formation observed by scanning tunneling microscopy is discussed on the basis of the phase diagram.  相似文献   

14.
The hydride-vapour-phase-epitaxial (HVPE) growth of semi-polar (1 1 2¯ 2)GaN is attempted on a GaN template layer grown on a patterned (1 1 3) Si substrate. It is found that the chemical reaction between the GaN grown layer and the Si substrate during the growth is suppressed substantially by lowering the growth temperatures no higher than 900 °C. And the surface morphology is improved by decreasing the V/III ratio. It is shown that a 230-μm-thick (1 1 2¯ 2)GaN with smooth surface is obtained at a growth temperature of 870 °C with V/III of 14.  相似文献   

15.
We investigated the effect of growth parameters for obtaining high-quality AlN grown directly on sapphire substrates by a hybridized method, derived from simultaneous source supply and conventional migration-enhanced epitaxy. At an optimal growth temperature of 1200 °C, AlN was atomically smooth and pit-free, while below and above 1200 °C, AlN was rough and with pits, respectively. Surface morphologies also depended on the V/III ratio. Rough surfaces became atomically smooth but then pits appeared, as the V/III ratio increased. The crystallinity revealed by X-ray diffraction changed accordingly. The 600-nm-thick AlN grown under the optimal conditions showed X-ray line widths of as narrow as ∼43 and ∼250 arcsec for (0 0 0 2) and (1 0 1¯ 2) diffractions, respectively.  相似文献   

16.
Semi-polar (1 1 2¯ 2) GaN layers were selectively grown by metal organic chemical vapor phase epitaxy on patterned Si (3 1 1) substrates without SiO2 amorphous mask. The (1 1 2¯ 2) GaN layers could be selectively grown only on Si (1 1 1) facets when the stripe mask width was narrower than 1 μm even without SiO2. Inhomogeneous spatial distribution of donor bound exciton (DBE) peak in low-temperature cathodoluminescence (CL) spectra was explained by the difference of growth mode before and after the coalescence of stripes. It was found that the emission intensity related crystal defects is drastically decreased in case of selective growth without SiO2 masks as compared to that obtained with SiO2 masks.  相似文献   

17.
Production and measurement of active nitrogen atoms (N+N*), which consist of ground state nitrogen atoms N and excited state nitrogen atoms N*, in an inductively coupled radio frequency discharge for the growth of group III nitrides and their alloys using a molecular beam epitaxy (MBE) were studied. Two discharge modes of the low brightness (LB) and the high brightness (HB) used in this study to produce excited nitrogen molecules (N2*) and dissociated active nitrogen atoms (N+N*). The flux of (N+N*) was measured by a Langumuir-like electrode due to the self-ionization of adsorbed (N+N*) on a negatively biased electrode. The self-ionization, which emits electrons from (N+N*), forms an atom current and is confirmed using different electrodes such as Pt and CuBe and different electrode area. The atom current was calibrated by the grown GaN thickness in a VG80H MBE machine. The calibrated flux of (N+N*) per atom current in the VG80H machine is 5.5×10−4 ML/s/nA, where ML is monolayer. The atom current is useful to monitor the flux of chemically active nitrogen atoms N+N* for growth of group III nitrides and their alloys. Activity modulation migration enhanced epitaxial growth (AM-MEE) was demonstrated as an application of the measurement of atom current for the growth of the group III nitrides.  相似文献   

18.
The continual improvement of IV-VI materials grown by molecular beam epitaxy (MBE) is a key step in the development of IV-VI infrared semiconductor devices on silicon substrates. This study presents a novel surface-treatment method which is carried out during MBE growth of monocrystalline PbSe on Si(1 1 1)-oriented substrates. Details of the experimental procedures are described and supported by reflection high-energy electron diffraction (RHEED) patterns. The effect of the in-situ surface-treatment method is exhibited in the forms of improved electrical and morphological properties of PbSe thin films. Specially, the carrier mobility increases almost three-fold at 77 K and nearly two-fold at 300 K. The density of the growth pits undergoes almost three-fold reduction, whereas the density of the threading dislocations decreases around four-fold.  相似文献   

19.
We have studied the low-temperature growth of gallium nitride arsenide (GaN)As layers on sapphire substrates by plasma-assisted molecular beam epitaxy. We have succeeded in achieving GaN1−xAsx alloys over a large composition range by growing the films much below the normal GaN growth temperatures with increasing the As2 flux as well as Ga:N flux ratio. We found that alloys with high As content x>0.1 are amorphous and those with x<0.1 are crystalline. Optical absorption measurements reveal a continuous gradual decrease of band gap from ∼3.4 to ∼1.35 eV with increasing As content. The energy gap reaches its minimum of ∼1.35 eV at x∼0.6–0.7. The structural, optical and electrical properties of these crystalline/amorphous GaNAs layers were investigated. For x<0.3, the composition dependence of the band gap of the GaN1−xAsx alloys follows the prediction of the band anticrossing model developed for dilute alloys. This suggests that the amorphous GaN1−xAsx alloys have short-range ordering that resembles random crystalline GaN1−xAsx alloys.  相似文献   

20.
Two-step selective epitaxy (SAG/ELO) of (1 1 2¯ 2)GaN on (1 1 3)Si substrate is studied to reduce the defect density in the epitaxial lateral overgrowth. The first SAG/ELO is to prepare a (1 1 2¯ 2)GaN template on a (1 1 3)Si and the second SAG/ELO is to get a uniform (1 1 2¯ 2)GaN. It is found that the reduction of the defect density is improved by optimizing the mask configuration in the second SAG/ELO. The minimum dark spot density obtained is 3×107/cm2, which is two orders of magnitude lower than that found in a (0 0 0 1)GaN grown on (1 1 1)Si.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号