首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 770 毫秒
1.
A new set of conservative 4th-order central finite differencing schemes for all the viscous terms of compressible Navier–Stokes equations are proposed and proved in this paper. These schemes are used with a 5th-order WENO scheme for inviscid flux and the stencil width of the central differencing scheme is designed to be within that of the WENO scheme. The central differencing schemes achieve the maximum order of accuracy in the stencil. This feature is important to keep the compactness of the overall discretization schemes and facilitate the boundary condition treatment. The algorithm is used to simulate the vortex-induced oscillations of an elastically mounted circular cylinder. The numerical results agree favorably with the experiment.  相似文献   

2.
In this Letter, we implemented relatively new, exact series method of solution known as the differential transform method for solving singular two-point boundary value problems. Several illustrative examples are given to demonstrate the effectiveness of the present method.  相似文献   

3.
In this paper a two-step iterative solution algorithm for solving the Camassa–Holm equation, which involves only the first-order derivative term, is presented. In each set of the u − P and u − m differential equations, one is governed by the inviscid nonlinear convection–reaction equation for the time-evolving fluid velocity component along the horizontal direction. The other equation is known as the inhomogeneous Helmholtz equation. The resulting reduction of differential order facilitates us to develop the flux discretization scheme in a stencil with comparatively fewer points. For accurately predicting the unidirectional propagation of the shallow water wave, the modified equation analysis for eliminating several leading discretization error terms and the Fourier analysis for minimizing a particular type of wave-like error are employed. In this study, the fifth-order spatially accurate combined compact upwind scheme is developed in a three-point stencil for approximating the first-order derivative term. For the purpose of retaining a long-term accurate Hamiltonian and multi-symplectic geometric structures in Camassa–Holm equation, the time integrator (or time-stepping scheme) chosen in this study should conserve symplecticity. Another main emphasis of conducting the present calculation of Camassa–Holm equation is to shed light on the conservation of Hamiltonians up to the time before wave breaking. We also intended to elucidate the switching scenario by virtue of the peakon–peakon interaction problem and the dissipative scenario after the time of head-on collision in the peakon–antipeakon interaction problem.  相似文献   

4.
We develop a smoothed aggregation-based algebraic multigrid solver for high-order discontinuous Galerkin discretizations of the Poisson problem. Algebraic multigrid is a popular and effective method for solving the sparse linear systems that arise from discretizing partial differential equations. However, high-order discontinuous Galerkin discretizations have proved challenging for algebraic multigrid. The increasing condition number of the matrix and loss of locality in the matrix stencil as p increases, in addition to the effect of weakly enforced Dirichlet boundary conditions all contribute to the challenging algebraic setting.  相似文献   

5.
We first construct an approximate Riemann solver of the HLLC-type for the Baer–Nunziato equations of compressible two-phase flow for the “subsonic” wave configuration. The solver is fully nonlinear. It is also complete, that is, it contains all the characteristic fields present in the exact solution of the Riemann problem. In particular, stationary contact waves are resolved exactly. We then implement and test a new upwind variant of the path-conservative approach; such schemes are suitable for solving numerically nonconservative systems. Finally, we use locally the new HLLC solver for the Baer–Nunziato equations in the framework of finite volume, discontinuous Galerkin finite element and path-conservative schemes. We systematically assess the solver on a series of carefully chosen test problems.  相似文献   

6.
In this Letter, we propose a reliable algorithm to develop exact and approximate solutions for the linear and non-linear systems of partial differential equations. The approach rest mainly on two-dimensional differential transform method which is one of the approximate methods. The method can easily be applied to many linear and non-linear problems and is capable of reducing the size of computational work. Exact solutions can also be achieved by the known forms of the series solutions. Several illustrative examples are given to demonstrate the effectiveness of the present method.  相似文献   

7.
Stable, accurate, divergence-free simulation of magnetized supersonic turbulence is a severe test of numerical MHD schemes and has been surprisingly difficult to achieve due to the range of flow conditions present. Here we present a new, higher order-accurate, low dissipation numerical method which requires no additional dissipation or local “fixes” for stable execution. We describe PPML, a local stencil variant of the popular PPM algorithm for solving the equations of compressible ideal magnetohydrodynamics. The principal difference between PPML and PPM is that cell interface states are evolved rather that reconstructed at every timestep, resulting in a compact stencil. Interface states are evolved using Riemann invariants containing all transverse derivative information. The conservation laws are updated in an unsplit fashion, making the scheme fully multidimensional. Divergence-free evolution of the magnetic field is maintained using the higher order-accurate constrained transport technique of Gardiner and Stone. The accuracy and stability of the scheme is documented against a bank of standard test problems drawn from the literature. The method is applied to numerical simulation of supersonic MHD turbulence, which is important for many problems in astrophysics, including star formation in dark molecular clouds. PPML accurately reproduces in three-dimensions a transition to turbulence in highly compressible isothermal gas in a molecular cloud model. The low dissipation and wide spectral bandwidth of this method make it an ideal candidate for direct turbulence simulations.  相似文献   

8.
We develop an efficient local time-stepping algorithm for the method of lines approach to numerical solution of transient partial differential equations. The need for local time-stepping arises when adaptive mesh refinement results in a mesh containing cells of greatly different sizes. The global CFL number and, hence, the global time step, are defined by the smallest cell size. This can be inefficient as a few small cells may impose a restrictive time step on the whole mesh. A local time-stepping scheme allows us to use the local CFL number which reduces the total number of function evaluations. The algorithm is based on a second order Runge–Kutta time integration. Its important features are a small stencil and the second order accuracy in the L2 and L norms.  相似文献   

9.
Recently it has been shown that there exists a sector within the Faddeev–Niemi model for which the equations of motion may be reduced to first order equations. However, no solutions to that sector have been given. It is not even known whether this sector contains topologically nontrivial solutions, at all. Here, we show that two models with analytically known Hopf solitons, namely the Nicole and the Aratyn–Ferreira–Zimerman models, possess sectors which can be integrated to first order partial differential equations. The main result is that these sectors are topologically nontrivial. In fact, all analytically known hopfions belong to them.  相似文献   

10.
We develop a high order finite difference numerical boundary condition for solving hyperbolic conservation laws on a Cartesian mesh. The challenge results from the wide stencil of the interior high order scheme and the fact that the boundary intersects the grids in an arbitrary fashion. Our method is based on an inverse Lax-Wendroff procedure for the inflow boundary conditions. We repeatedly use the partial differential equation to write the normal derivatives to the inflow boundary in terms of the time derivatives and the tangential derivatives. With these normal derivatives, we can then impose accurate values of ghost points near the boundary by a Taylor expansion. At outflow boundaries, we use Lagrange extrapolation or least squares extrapolation if the solution is smooth, or a weighted essentially non-oscillatory (WENO) type extrapolation if a shock is close to the boundary. Extensive numerical examples are provided to illustrate that our method is high order accurate and has good performance when applied to one and two-dimensional scalar or system cases with the physical boundary not aligned with the grids and with various boundary conditions including the solid wall boundary condition. Additional numerical cost due to our boundary treatment is discussed in some of the examples.  相似文献   

11.
12.
In this paper, we propose a general time-discrete framework to design asymptotic-preserving schemes for initial value problem of the Boltzmann kinetic and related equations. Numerically solving these equations are challenging due to the nonlinear stiff collision (source) terms induced by small mean free or relaxation time. We propose to penalize the nonlinear collision term by a BGK-type relaxation term, which can be solved explicitly even if discretized implicitly in time. Moreover, the BGK-type relaxation operator helps to drive the density distribution toward the local Maxwellian, thus naturally imposes an asymptotic-preserving scheme in the Euler limit. The scheme so designed does not need any nonlinear iterative solver or the use of Wild Sum. It is uniformly stable in terms of the (possibly small) Knudsen number, and can capture the macroscopic fluid dynamic (Euler) limit even if the small scale determined by the Knudsen number is not numerically resolved. It is also consistent to the compressible Navier–Stokes equations if the viscosity and heat conductivity are numerically resolved. The method is applicable to many other related problems, such as hyperbolic systems with stiff relaxation, and high order parabolic equations.  相似文献   

13.
The relation between the Wilson–Polchinski and the Litim optimized ERGEs in the local potential approximation is studied with high accuracy using two different analytical approaches based on a field expansion: a recently proposed genuine analytical approximation scheme to two-point boundary value problems of ordinary differential equations, and a new one based on approximating the solution by generalized hypergeometric functions. A comparison with the numerical results obtained with the shooting method is made. A similar accuracy is reached in each case. Both two methods appear to be more efficient than the usual field expansions frequently used in the current studies of ERGEs (in particular for the Wilson–Polchinski case in the study of which they fail).  相似文献   

14.
This paper is devoted to a new high-accuracy finite difference scheme for solving reaction-convection-diffusion problems with a small diffusivity $\varepsilon$. With a novel treatment for the reaction term, we first derive a difference scheme of accuracy $\mathcal{O}(\varepsilon^2 h + \varepsilon h^2 + h^3)$ for the 1-D case. Using the alternating direction technique, we then extend the scheme to the 2-D case on a nine-point stencil. We apply the high-accuracy finite difference scheme to solve the 2-D steady incompressible Navier-Stokes equations in the stream function-vorticity formulation. Numerical examples are given to illustrate the effectiveness of the proposed difference scheme. Comparisons made with some high-order compact difference schemes show that the newly proposed scheme can achieve good accuracy with better stability.  相似文献   

15.
雷国东  任玉新 《计算物理》2009,26(6):799-805
将基于旋转近似Riemann求解器的二阶精度迎风型有限体积方法推广到非结构网格,采用基于网格中心的有限体积法,梯度的计算采用基于节点的方法引入更多的控制体模板,限制器的构造采用与非结构化网格相适应的形式.在求解Riemann问题时,沿具有一定物理意义的两个迎风方向,即控制体界面两侧速度差矢量方向及与之正交的方向.能够完全消除基于Riemann求解器的通量差分裂格式存在的激波不稳定或"红斑"现象.为减小计算量,采用HLL和Roe FDS混合旋转格式.  相似文献   

16.
The goal of this paper is to present high-order cell-centered schemes for solving the equations of Lagrangian gas dynamics written in cylindrical geometry. A node-based discretization of the numerical fluxes is obtained through the computation of the time rate of change of the cell volume. It allows to derive finite volume numerical schemes that are compatible with the geometric conservation law (GCL). Two discretizations of the momentum equations are proposed depending on the form of the discrete gradient operator. The first one corresponds to the control volume scheme while the second one corresponds to the so-called area-weighted scheme. Both formulations share the same discretization for the total energy equation. In both schemes, fluxes are computed using the same nodal solver which can be viewed as a two-dimensional extension of an approximate Riemann solver. The control volume scheme is conservative for momentum, total energy and satisfies a local entropy inequality in its first-order semi-discrete form. However, it does not preserve spherical symmetry. On the other hand, the area-weighted scheme is conservative for total energy and preserves spherical symmetry for one-dimensional spherical flow on equi-angular polar grid. The two-dimensional high-order extensions of these two schemes are constructed employing the generalized Riemann problem (GRP) in the acoustic approximation. Many numerical tests are presented in order to assess these new schemes. The results obtained for various representative configurations of one and two-dimensional compressible fluid flows show the robustness and the accuracy of our new schemes.  相似文献   

17.
This paper presents a third-order and fourth-order finite-volume method for solving the shallow-water equations on a non-orthogonal equiangular cubed-sphere grid. Such a grid is built upon an inflated cube placed inside a sphere and provides an almost uniform grid point distribution. The numerical schemes are based on a high-order variant of the Monotone Upstream-centered Schemes for Conservation Laws (MUSCL) pioneered by van Leer. In each cell the reconstructed left and right states are either obtained via a dimension-split piecewise-parabolic method or a piecewise-cubic reconstruction. The reconstructed states then serve as input to an approximate Riemann solver that determines the numerical fluxes at two Gaussian quadrature points along the cell boundary. The use of multiple quadrature points renders the resulting flux high-order. Three types of approximate Riemann solvers are compared, including the widely used solver of Rusanov, the solver of Roe and the new AUSM+-up solver of Liou that has been designed for low-Mach number flows. Spatial discretizations are paired with either a third-order or fourth-order total-variation-diminishing Runge–Kutta timestepping scheme to match the order of the spatial discretization. The numerical schemes are evaluated with several standard shallow-water test cases that emphasize accuracy and conservation properties. These tests show that the AUSM+-up flux provides the best overall accuracy, followed closely by the Roe solver. The Rusanov flux, with its simplicity, provides significantly larger errors by comparison. A brief discussion on extending the method to arbitrary order-of-accuracy is included.  相似文献   

18.
Anuar Ishak  Khamisah Jafar  Ioan Pop 《Physica A》2009,388(17):3377-3383
The steady two-dimensional MHD stagnation point flow towards a stretching sheet with variable surface temperature is investigated. The governing system of partial differential equations are transformed into ordinary differential equations, which are then solved numerically using a finite-difference scheme known as the Keller-box method. The effects of the governing parameters on the flow field and heat transfer characteristics are obtained and discussed. It is found that the heat transfer rate at the surface increases with the magnetic parameter when the free stream velocity exceeds the stretching velocity, i.e. ε>1, and the opposite is observed when ε<1.  相似文献   

19.
During the past decade gas-kinetic methods based on the BGK simplification of the Boltzmann equation have been employed to compute fluid flow in a finite-difference or finite-volume context. Among the most successful formulations is the finite-volume scheme proposed by Xu [K. Xu, A gas-kinetic BGK scheme for the Navier–Stokes equations and its connection with artificial dissipation and Godunov method, J. Comput. Phys. 171 (48) (2001) 289–335]. In this paper we build on this theoretical framework mainly with the aim to improve the efficiency and convergence of the scheme, and extend the range of application to three-dimensional complex geometries using general unstructured meshes. To that end we propose a modified BGK finite-volume scheme, which significantly reduces the computational cost, and improves the behavior on stretched unstructured meshes. Furthermore, a modified data reconstruction procedure is presented to remove the known problem that the Chapman–Enskog expansion of the BGK equation fixes the Prandtl number at unity. The new Prandtl number correction operates at the level of the partial differential equations and is also significantly cheaper for general formulations than previously published methods. We address the issue of convergence acceleration by applying multigrid techniques to the kinetic discretization. The proposed modifications and convergence acceleration help make large-scale computations feasible at a cost competitive with conventional discretization techniques, while still exploiting the advantages of the gas-kinetic discretization, such as computing full viscous fluxes for finite volume schemes on a simple two-point stencil.  相似文献   

20.
We outline a new class of robust and efficient methods for solving the Navier–Stokes equations with a Boussinesq model for buoyancy driven flow. We describe a general solution strategy that has two basic building blocks: an implicit time integrator using a stabilized trapezoid rule with an explicit Adams–Bashforth method for error control, and a robust Krylov subspace solver for the spatially discretized system. We present numerical experiments illustrating the efficiency of the chosen preconditioning schemes with respect to the discretization parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号