首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The pheromone-binding protein from the silkworm moth, Bombyx mori (BmorPBP) has been covalently bonded to a liquid chromatographic stationary phase. The resulting column was evaluated using radiolabeled bombykol and the immobilized protein retained its ability to bind this ligand. The data also demonstrate that the BmorPBP column was able to distinguish between four compounds, and rank them in their relative order of affinity for the protein from highest to lowest: bombykol > bombykal > 1-hexadecanol > (Z,E)-5,7-dodecadien-1-ol, and that the immobilized BmorPBP retained its pH-dependent conformational mobility.The results of this study demonstrate that pheromone-binding protein from the silkworm moth, Bombyx mori and an odorant binding protein (OBP) obtained from the female mosquito Culex quinquefasciatoes have been immobilized on a silica support with retention of ligand-binding activity. The data indicate that proteins from non-mammalian organisms can be used to create liquid chromatography affinity columns.  相似文献   

2.
The effect of a feed ratio of methyltrimethoxysilane (MTMS) to tetramethoxysilane (TMOS) was studied to improve the performance of a hybrid monolithic silica capillary column with 100-μm i.d. in HPLC in a range MTMS/TMOS (v/v) = 10/90–25/75. The domain size was also varied by adjusting the amount of PEG to control permeability (K = 2.8 × 10−14–6.9 × 10−14 m2). Evaluation of the performance for those capillary columns following octadecylsilylation proved an increase in retention factor (k) and a decrease in steric selectivity α(triphenylene/ortho-terphenyl) with the increase in MTMS content in the feed. The effect of the feed ratio was also observed in porosity and hydrophobic property of the C18 stationary phase from the results of size exclusion chromatography (SEC) and reversed phase characterization. The monolithic silica capillary columns prepared under new preparation conditions were able to produce a plate height of 4.6–6.0 μm for hexylbenzene in a mobile phase acetonitrile/water = 80/20 at a linear velocity of 2 mm/s. Consequently, it was possible to prepare hybrid monolithic silica capillary columns with higher performance than those reported previously while maintaining the retention factors in a similar range by reducing the MTMS/TMOS ratio and increasing the total silane concentration in feed.  相似文献   

3.
In this work, size exclusion chromatography (SEC) with UV and inductively coupled plasma mass spectrometry (ICP-MS) detection was used to study the association of selenium to proteins present in Brazil nuts (Bertholletia excelsa) under five different extraction conditions. As expected, better solubilization of proteins was observed using 0.05 mol L−1 sodium hydroxide and 1% sodium dodecylsulfate (SDS) in Tris/HCl buffer (0.05 mol L−1, pH 8) as compared to 0.05 mol L−1 HCl, 0.05 mol L−1 Tris/HCl or hot water (60 °C). Due to non-destructive character of Tris-SDS treatment, this was applied for studying molecular weight (MW) distribution patterns of selenium-containing nut proteins. Three different SEC columns were used for obtaining complete MW distribution of selenium: Superdex 75, Superdex Peptide, and Superdex 200 were tested with 50 mmol L−1 Tris buffer (pH 8), 150 mmol L−1 ammonium bicarbonate buffer (pH 7.8), phosphate (pH 7.5), and CAPS (pH 10.0) mobile phases. Using Superdex 200 column, the elution of at least three MW fractions was observed with UV detection (200-10 kDa) and ICP-MS chromatogram showed the co-elution of selenium with the two earlier fractions. The apparent MWs of these selenium-containing fractions were respectively about 107 and 50 kDa, as evaluated from the column calibration. For further characterization of individual selenium species, the defatted nuts were hydrolyzed with proteinase K and analyzed by capillary electrophoresis (CE) with ICP-MS detection. The suitability of CE for the separation of selenite, selenate, selenocystine and selenomethionine in the presence of the nut sample matrix is demonstrated. Complete separation of the above mentioned selenium species was obtained within a migration time of 7 min. In the analysis of nut extracts with CE-ICP-MS, selenium was found to be present mainly as selenomethionine.  相似文献   

4.
The retention of chromium (VI) from aqueous media onto tetraphenylarsonium chloride (TPAs+Cl) or tetraphenylphosphonium bromide (TPP+Br) immobilized polyurethane foams (PUFs) was fast and followed first order reaction. The kinetic data of the retention step were subjected to Weber-Morris, Lagergren, Bhattacharya and Venkobachar and Bt kinetic models. The results revealed that, film and intraparticle transport might be the two steps controlling the rate of chromium (VI) sorption from the aqueous acid solutions of pH ∼ zero. The positive values of the Δ H of chromium (VI) retention by the reagents loaded PUFs were interpreted as an endothermic process. Under the optimum pH (pH ∼ zero ) of the aqueous solution, the proposed TPAs+Cl or TPP+Br immobilized PUFs was successfully used in a series of medical syringe (30, 50 mL capacity) as pulse columns for complete collection of chromium (VI) species present in fresh and industrial wastewater samples at ultra trace low level of chromium (VI) (≤ 0.05 μg mL− 1). The collected chromium (VI) species onto TPAs+Cl or TPP+Br-PUFs was then stripped quantitatively (98-102 ± 2.6%) from the pulse columns with NaOH (2.0 mol L− 1) and subsequently analyzed photometrically. The chromium (VI) ions could be pre concentrated up to 100-fold from large volume of water samples. The proposed pulse foam columns were applied successfully for complete collection, recovery (97.5 ± 2.6%, n = 5) and subsequent chemical speciation of chromium (III) and (VI) in wastewater samples. The results are in good agreement with the reported and standard methods at 95% confidence.  相似文献   

5.
Stilbene-maleic anhydride is a well-known donor-acceptor comonomer pair which undergoes free radical copolymerization to form an alternating copolymer. A series of methyl substituted stilbenes were synthesized and copolymerized with maleic anhydride. A conversion versus time study was undertaken to understand the methyl substituent effect on copolymerization rates. Methyl substituents on the phenyl ring of stilbene can change the reactivity of stilbene by changing the resonance stability of the propagating radical and steric hindrance in the propagation step and thereby change the copolymerization rate. Methyl substituted stilbene-maleic anhydride copolymers were determined by quantitative 13C 1D NMR to be alternating copolymers. Size exclusion chromatography (SEC) measurements showed that the weight-average molecular weights of these copolymers varied from 3000 to over 1,000,000 g/mol. Interchain aggregation was observed in poly((E)-4-methylstilbene-alt-maleic anhydride) by dynamic light scattering (DLS). The SEC trace for poly((E)-4-methylstilbene-alt-maleic anhydride) exhibited bimodal peaks. No glass transition temperature or crystalline melting temperature was observed between 0 °C and 250 °C by differential scanning calorimetry (DSC). Thermogravimetric analysis (TGA) showed that these polymers have 5% weight loss around 290 °C.  相似文献   

6.
The orthogonality of three columns coupled in two series was studied for the congener specific comprehensive two-dimensional GC separation of polychlorinated biphenyls (PCBs). A non-polar capillary column coated with poly(5%-phenyl–95%-methyl)siloxane was used as the first (1D) column in both series. A polar capillary column coated with 70% cyanopropyl-polysilphenylene-siloxane or a capillary column coated with the ionic liquid 1,12-di(tripropylphosphonium)dodecane bis(trifluoromethane-sulfonyl)imide were used as the second (2D) columns. Nine multi-congener standard PCB solutions containing subsets of all native 209 PCBs, a mixture of 209 PCBs as well as Aroclor 1242 and 1260 formulations were used to study the orthogonality of both column series. Retention times of the corresponding PCB congeners on 1D and 2D columns were used to construct retention time dependences (apex plots) for assessing orthogonality of both columns coupled in series. For a visual assessment of the peak density of PCBs congeners on a retention plane, 2D images were compared. The degree of orthogonality of both column series was, along the visual assessment of distribution of PCBs on the retention plane, evaluated also by Pearson's correlation coefficient, which was found by correlation of retention times tR,i,2D and tR,i,1D of corresponding PCB congeners on both column series. It was demonstrated that the apolar + ionic liquid column series is almost orthogonal both for the 2D separation of PCBs present in Aroclor 1242 and 1260 formulations as well as for the separation of all of 209 PCBs. All toxic, dioxin-like PCBs, with the exception of PCB 118 that overlaps with PCB 106, were resolved by the apolar/ionic liquid series while on the apolar/polar column series three toxic PCBs overlapped (105 + 127, 81 + 148 and 118 + 106).  相似文献   

7.
Poly(styrene-b-siloxane) multi-block copolymers have been prepared by polyhydrosilylation reaction. Four copolymers have been synthesized by the reaction of α,ω-bis silane polydimethylsiloxanes with α,ω-bis allyl polystyrene. The latter has been obtained by the reaction of carboxy-telechelic polystyrene with allyl glycidyl ether. 1H NMR and FT-IR analyses show that the polyhydrosilylation reaction is quantitative. The copolymer molecular weights were determined by SEC to be about 25,000 g/mol. The properties of these copolymers were characterized by DSC and DMA analyses. The rubbery plateaus of these copolymers are in the range of −115 °C to 85 °C.  相似文献   

8.
Despite the wide applicability and specificity of lectins to carbohydrate moieties, there are few lectin specific biosensors. This is attributed to the difficulty in defining the relevant experimental parameters to measure for sensing. We hereby describe the development of direct and indirect electrochemical sensors to determine the exact trace amounts of probarley lectin (ProBL) and its conversion product wheat germ agglutinin (WGA). In addition to WGA, the antigens (ProBL) employed in this study were over expressed in bacteria, isolated from protein bodies, and purified using immobilized N-acetylglusamine in order to obtain correctly folded active lectins. The amperometric immunosensor uses cell lines producing monoclonal antibody (mAB) to the pro-region of ProBL over expressed from Escherichia coli. The efficacy and sensing characteristics of the lectin were optimized using monoclonal antibody to WGA and the resulting sensor was found to detect only ProBL in the linear range 10−3-102 μg mL−1 and a detection limit of 10−3 μg mL−1.  相似文献   

9.
Porous layer open tubular (PLOT) polystyrene divinylbenzene columns have been used for separating intact proteins with gradient elution. The 10 μm I.D. × 3 m columns were easily coupled to standard liquid chromatography–mass spectrometry (LC–MS) instrumentation with commercially available fittings. Standard proteins separated on PLOT columns appeared as narrow and symmetrical peaks with good resolution. Average peak width increased linearly with gradient time (tG) from 0.14 to 0.33 min (tG 20 and 120 min, respectively) using a 3 m column. With shorter columns, peak widths were larger and increased more steeply with gradient time. Theoretical peak capacity (nc) increased with column length (tested up to 3 m). The nc increased with tG until a plateau was reached. The highest peak capacity achieved (nc = 185) was obtained with a 3 m column, where a plateau was reached with tG 90 min. The within- and between column retention time repeatabilities were below 0.6% and below 2.5% (relative standard deviation, RSD), respectively. The carry-over following injection of 0.5 ng per protein was less than 1.1%. The retention time dependence on column temperature was investigated in the range 20–50 °C. Proteins in a skimmed milk sample were separated using the method.  相似文献   

10.
The influence of different parameters on the sorption profiles of trace and ultra traces of gold (I) species from the aqueous cyanide media onto the solid sorbents ion exchange polyurethane foams (IEPUFs) and commercial unloaded polyurethane foams (PUFs) based polyether type has been investigated. The retention of gold (I) species onto the investigated solid sorbents followed a first-order rate equation with an overall rate constant k in the range 2.2-2.8 ± 0.2 s−1. The sorption data of gold (I) followed Freundlich and Langmuir isotherm models. Thus, the a dual-mode of sorption mechanism involving absorption related to “weak base anion exchanger” and an added component for “surface adsorption” seems the most likely proposed dual mechanism for retention profile of gold (I) by the IEPUFs and PUFs solid sorbents. The capacity of the IEPUFs and PUFs towards gold (I) sorption calculated from the sorption isotherms was found to be 11.21 ± 1.8 and 5.29 ± 0.9 mg g−1, respectively. The chromatographic separation of the spiked inorganic gold (I) from de ionized water at concentrations 5-15 μg mL−1 onto the developed IEPUFs and PUFs packed columns at 10 mL min−1 flow rate was successfully achieved. The retained gold (I) species were then recovered quantitatively from the IEPUFs (98.4 ± 2.4%, n = 5) and PUFs (95.4 ± 3.4%, n = 5) packed columns using perchloric acid (60 mL, 1.0 mol L−1) as a proper eluating agent. Thiourea (1.0 mol L−1)-H2SO4 (0.1 mol L−1) system was also used as eluating agent for the recovery of gold (I) from IEPUFS (95.4 ± 5.4%, n = 3) and also PUFs (93.4 ± 4.4%, n = 3) packed columns. The performance of the IEPUFs and PUFs packed columns in terms of the height equivalent to the theoretical plates (HETP), number of plates (N), and critical and breakthrough capacities towards gold (I) species were evaluated. The developed IEPUFs packed column was applied successfully for complete retention and recovery (98.5 ± 2.7) of gold (III) species spiked onto tap- and industrial wastewater samples at <10 μg Au mL−1 after reduction to gold (I). The IEPUFs packed column was applied satisfactorily for complete retention and recovery (98.5 ± 2.7) of total inorganic gold (I) and/or gold (III) species spiked to tap- and industrial wastewater samples at <10 μg mL−1 gold. Chromatographic separation of gold (I) from silver (I) and base metal ions (Fe, Ni, Cu and Zn) using IEPUFS packed columns was satisfactorily achieved. The proposed method was applied successfully for the pre-concentration and separation from anodic slime and subsequent FAAS determination of analyte with satisfactory results (recoveries >95%, relative standard deviations <4.0%).  相似文献   

11.
The stabilization modification of the halogen end groups of polystyrene prepared by atom transfer radical polymerization (ATRP) has been attempted. The reaction mechanism adopted is radical chain transfer reaction, and iso-propylbenzene is employed as not only the chain transfer agent but also the solvent. Moreover, Cu0 is used as the acceptor of the transformed halogen atom in some experiments. As evidenced by 1H NMR analysis of the modified products, the halogen end group can really be converted into the much more stable carbon-hydrogen structure. When Cu0 is not used, the conversion of the halogen end groups rises rapidly during the early stage and the increase rate slows down after about 8 h reaction. In view of the influence of reaction temperature on the modification, the conversion increases almost exponentially with temperature in the range of 80-100 °C, and the increase rate slows down at higher temperature. 1H NMR and SEC analyses prove that the modification reaction does not destroy the polymer backbone and the molecular weights remain almost the same as those of the unmodified samples. When Cu0 is introduced, the modification reaction proceeds much rapidly, the conversion of the halogen end groups rises almost linearly at the early stage and the nearly complete (>95%) dehalogenation of the polymeric chains is observed after only 12 h reaction. However, the molecular weights rise and the polydispersities become wider after the modification, which implies that the modification is accompanied with the couple termination of the polystyrene radicals besides chain transfer reaction. Furthermore, the couple termination can be restrained at some lower catalyst concentration. Indeed, the modified polymers show improved thermal stability, the initial weight loss temperatures is increased from 196 °C to 378 °C for the linear polystyrene and from 203 °C to 261 °C for the hyperbranched polystyrene.  相似文献   

12.
A labeling-free surface plasmon resonance (SPR) sensor technique was used to monitor the conformational changes of immobilized globular proteins (RNase A and Lysozyme) in chemical unfolding and refolding. The conformational changes of proteins at solid/liquid interface are characterized as two-state transformation (S-shaped) curves through matrix-effect correction and theoretic estimation. By extrapolation with a Santoro-Bolen equation, the SPR results for both reductive immobilized proteins are estimated to 1.9 kcal mole−1 global free energy (ΔGU) in urea-induced unfolding. But the ΔGU for RNase A and Lysozyme in GdmCl-induced unfolding are 1.5 and 2.15 kcal mole−1, respectively. The disagreement in free energy is partially accounted for by the differences of intra-molecular interactions and immobilization.  相似文献   

13.
The role of electrostatics is studied in the adsorption of cationic proteins to zwitterionic phosphatidylcholine (PC) and anionic PC/phosphatidylglycerol (PG) mixed small unilamellar vesicles (SUVs). For model proteins the interaction is monitored vs. PG content at low ionic strength. The adsorption of lysozyme and myoglobin (isoelectric point, pI 7-11) is investigated in SUVs, along with changes of the fluorescence emission spectra of the cationic proteins, via their adsorption on SUVs. In the Gouy-Chapman formalism, the activity coefficient goes with the square of charge number. Deviations from the ideal model could indicate the asymmetric location of the anionic phospholipid in the bilayer inner leaflet, in mixed zwitterionic/anionic SUVs for both lysozyme- and myoglobin-PC/PG systems, in agreement with experiments and molecular dynamics simulations. Fitted effective SUV charge stays constant. Effective—formal difference increases 0.417 e.u. Effective protein charge increases as PC/PG < PC being greater for myoglobin. The molar free energies of the protein in aqueous and lipid phases increase as PC < PC/PG. Both free-energy changes are greater for myoglobin. Effective interfacial charge stays constant for anionic PC/PG SUVs being greater for myoglobin.  相似文献   

14.
Our group recently reported on the application of protein-doped monolithic silica columns for immobilized enzyme reactor chromatography, which allowed screening of enzyme inhibitors present in mixtures using mass spectrometry for detection. The enzyme was immobilized by entrapment within a bimodal meso/macroporous silica material prepared by a biocompatible sol-gel processing route. While such columns proved to be useful for applications such as screening of protein-ligand interactions, significant amounts of entrapped proteins leached from the columns owing to the high proportion of macropores within the materials. Herein, we describe a detailed study of factors affecting the morphology of protein-doped bioaffinity columns and demonstrate that specific pH values and concentrations of poly(ethylene glycol) can be used to prepare essentially mesoporous columns that retain over 80% of initially loaded enzyme in an active and accessible form and yet still retain sufficient porosity to allow pressure-driven flow in the low μL/min range. Using the enzyme γ-glutamyl transpeptidase (γ-GT), we further evaluated the catalytic constants of the enzyme entrapped in capillary columns with different silica morphologies as a function of flowrate and backpressure using the enzyme reactor assay mode. It was found that the apparent activity of the enzyme was highest in mesoporous columns that retained high levels of enzyme. In such columns, enzyme activity increased by ∼2-fold with increases in both flowrate (from 250 to 1000 nL/min) and backpressure generated (from 500 to 2100 psi) during the chromatographic activity assay owing to increases in kcat and decreases in KM, switching from diffusion controlled to reaction controlled conditions at ca. 2000 psi. These results suggest that columns with minimal macropore volumes (<5%) are advantageous for the entrapment of soluble proteins for bioaffinity and bioreactor chromatography.  相似文献   

15.
The isoelectric point (pI), molecular weight (MW) and aqueous two-phase partitioning coefficients of a set of model proteins were related to retention time in cation-exchange chromatography using partial least squares regression. A three-dimensional method which combined hydrophobic partitioning and two-dimensional electrophoresis was used to determine those three properties for a mixture of proteins. The regression models fit well (R2 = 0.913 and 0.873 for two resin types) considering the limited property basis, and were able to predict results for a small test set of proteins. The models showed that greater size and charge increased retention time, while the net influence of hydrophobicity depended on the base matrix type. This establishes the potential for the intended application to complex mixtures of host cell proteins.  相似文献   

16.
Tyrosinase from a plant source Amorphophallus companulatus was immobilized on eggshell membrane using glutaraldehyde. Among the three different approaches used for immobilization, activation of eggshell membrane by glutaraldehyde followed by enzyme adsorption on activated support could stabilize the enzyme tyrosinase and was found to be effective. Km and Vmax values for dopamine hydrochloride calculated from Lineweaver-Burk plot were 0.67 mM and 0.08 mM min−1, respectively. Studies on effect of pH showed retention of more than 90% activity over a pH range 5.0-6.5. Membrane bound enzyme exhibited consistent activity in the temperature range 20-45 °C. Shelf life of immobilized tyrosinase system was found to be more than 6 months when stored in phosphate buffer at 4 °C. An electrochemical biosensor for dopamine was developed by mounting the tyrosinase immobilized eggshell membrane on the surface of glassy carbon electrode. Dopamine concentrations were determined by the direct reduction of biocatalytically liberated quinone species at −0.19 V versus Ag/AgCl (3 M KCl). Linearity was observed within the range of 50-250 μM with a detection limit of 25 μM.  相似文献   

17.
A study was performed to assess the performance of aminoacids immobilized on carbon nanotubes (CNTs) for their employment as a sorbent for solid phase extraction systems. An immobilization method is introduced and the aminoacid l-tyrosine was chosen as a case study. A spectrophotometric study revealed the amount of aminoacid immobilizated on CNTs surface, and it turned to be of 3174 μmol of l-tyr g−1. The material was tested for Co retention using a minicolumn inserted in a flow system. At pH 7.0, the amount of Co retained by the column was of 37.58 ± 3.06 μmol Co g−1 of CNTs. A 10% (v/v) HNO3 solution was chosen as eluent. The pH study revealed that Co binding increased at elevated pH values. The calculation of the mol ratio (moles of Co bound at pH 9 to moles of l-tyr) turned to be 3:1. The retention capacity was compared to other bivalent cations and showed the following tendency: Cu2+ > Ni2+ > Zn2+ ? Co2+. The analytical performance was evaluated and an enrichment factor of 180 was obtained when 10 mL of 11.37 μg L−1 Co solution was loaded onto the column at pH 9.0; reaching a limit of detection (LoD) of 50 ng L−1. The proposed system was successfully applied to Co determination in QC-LL2 standard reference material (metals in natural water).  相似文献   

18.
Anion-exchange (AEX) columns were prepared by on-column polymerization of acrylates and methacrylates containing tertiary amino or quaternary ammonium groups on monolithic silica in a fused silica capillary modified with anchor groups. The columns provided a plate height (H) of less than 10 μm at optimum linear velocity (u) with keeping their high permeability (K = 9–12 × 10−14 m2). Among seven kinds of AEX columns, a monolithic silica column modified with poly(2-hydroxy-3-(4-methylpiperazin-1-yl)propyl methacrylates) (HMPMA) showed larger retentions and better selectivities for nucleotides and inorganic anions than the others. The HMPMA column of 410 mm length produced 42 000–55 000 theoretical plates (N) at a linear velocity of 0.97 mm/s with a backpressure of 3.8 MPa. The same column could be employed for a fast separation of inorganic anions in 1.8 min at a linear velocity of 5.3 mm/s with a backpressure of 20 MPa. In terms of van Deemter plot and separation impedance, the HMPMA column showed higher performance than a conventional particle-packed AEX column. The HMPMA column showed good recovery of a protein, trypsin inhibitor, and it was applied to the separation of proteins and tryptic digest of bovine serum albumin (BSA) in a gradient elution, to provide better separation compared to a conventional particle-packed AEX column.  相似文献   

19.
In order to evaluate more precise kinetics parameters: rate constant k and Ea values for poly(l-lactic acid) hydrolysis, the reaction was carried out under high-pressure steam in a temperature range of 100-130 °C. Molecular weights of hydrolyzates were calculated by the universal calibration method without being influenced by any weight loss. The changes in molecular weight could be successfully explained according to the auto-catalytic hydrolysis mechanism, clearly indicating the critical point. Resulting k and Ea values were estimated as 8.4 × 10−5-7.2 × 10−4 s−1 and 87.2 kJ mol−1 with high R2 values, respectively. Moreover, to determine the deviation of the parameter values, influences of four factors on the measurements and calculation: (1) use of number-average molecular weight value alone, (2) use of relative molecular weight based on polystyrene standards, (3) weight loss during the hydrolysis, and (4) selection of reaction mechanism were evaluated quantitatively.  相似文献   

20.
In this study, the oxidative polycondensation reaction conditions of 2-[(4-fluorophenyl) imino methylene] phenol (FPIMP) with air oxygen and NaOCl were studied in an aqueous alkaline medium between 60 and 90 °C. Synthesized oligo-2-[(4-fluorophenyl) imino methylene] phenol was characterized by 1H-NMR, FT-IR, UV-Vis, size exclusion chromatography (SEC) and elemental analysis techniques. The yield of oligo-2-[(4-fluorophenyl) imino methylene] phenol (OFPIMP) was found to be 62.00% (for air O2 oxidant) and 97.70% (for NaOCl oxidant) at the optimum reaction conditions. According to the SEC analysis, the number-average molecular weight (Mn), weight-average molecular weight (Mw) and polydispersity index (PDI) values of OFPIMP were found to be 1370 g mol−1, 1979 g mol−1 and 1.45, using NaOCl, 2105 g mol−1, 2557 g mol−1, and 1.22, using air O2, respectively. During the oxidative polycondensation reaction, (2.88%) a part of -CHN group oxidized to carboxylic acid (-COOH). TG and TG-DTA analyses were shown to be more stable of oligo-2-[(4-fluorophenyl) imino methylene] phenol and its oligomer metal complexes than monomer against thermo-oxidative decomposition. The weight loss of OFPIMP was found to be 97.00% at 900 °C. The weight losses of OFPIMP-Co, OFPIMP-Ni OFPIMP-Cu oligomer-metal complex compounds were found to be 88.66%, 94.36% and 83.21%, respectively, at 1000 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号