共查询到20条相似文献,搜索用时 31 毫秒
1.
For non-Hermitian saddle point linear systems, Pan, Ng and Bai presented a positive semi-definite and skew-Hermitian splitting (PSS) preconditioner (Pan et al. Appl. Math. Comput. 172, 762–771 2006), to accelerate the convergence rate of the Krylov subspace iteration methods like the GMRES method. In this paper, a relaxed positive semi-definite and skew-Hermitian (RPSS) splitting preconditioner based on the PSS preconditioner for the non-Hermitian generalized saddle point problems is considered. The distribution of eigenvalues and the form of the eigenvectors of the preconditioned matrix are analyzed. Moreover, an upper bound on the degree of the minimal polynomial is also studied. Finally, numerical experiments of a model Navier-Stokes equation are presented to illustrate the efficiency of the RPSS preconditioner compared to the PSS preconditioner, the block diagonal preconditioner (BD), and the block triangular preconditioner (BT) in terms of the number of iteration and computational time. 相似文献
2.
Based on the modified relaxed splitting (MRS) preconditioner proposed by Fan and Zhu (Appl. Math. Lett. 55, 18–26 2016), an inexact modified relaxed splitting (IMRS) preconditioner is proposed for the generalized saddle point problems arising from the incompressible Navier-Stokes equations. The eigenvalues and eigenvectors of the preconditioned matrix are analyzed, and the convergence property of the corresponding iteration method is also discussed. Numerical experiments are presented to show the effectiveness of the proposed preconditioner when it is used to accelerate the convergence rate of Krylov subspace methods such as GMRES. 相似文献
3.
In this paper, we consider the Hermitian and skew-Hermitian splitting (HSS) preconditioner for generalized saddle point problems with nonzero (2, 2) blocks. The spectral property of the preconditioned matrix is studied in detail. Under certain conditions, all eigenvalues of the preconditioned matrix with the original system being non-Hermitian will form two tight clusters, one is near (0, 0) and the other is near (2, 0) as the iteration parameter approaches to zero from above, so do all eigenvalues of the preconditioned matrix with the original system being Hermitian. Numerical experiments are given to demonstrate the results. 相似文献
4.
Yang Cao Mei‐Qun Jiang Ying‐Long Zheng 《Numerical Linear Algebra with Applications》2011,18(5):875-895
For large sparse systems of linear equations iterative techniques are attractive. In this paper, we study a splitting method for an important class of symmetric and indefinite system. Theoretical analyses show that this method converges to the unique solution of the system of linear equations for all t>0 (t is the parameter). Moreover, all the eigenvalues of the iteration matrix are real and nonnegative and the spectral radius of the iteration matrix is decreasing with respect to the parameter t. Besides, a preconditioning strategy based on the splitting of the symmetric and indefinite coefficient matrices is proposed. The eigensolution of the preconditioned matrix is described and an upper bound of the degree of the minimal polynomials for the preconditioned matrix is obtained. Numerical experiments of a model Stokes problem and a least‐squares problem with linear constraints presented to illustrate the effectiveness of the method. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
5.
For the nonsymmetric saddle point problems with nonsymmetric positive definite (1,1) parts, the modified generalized shift-splitting (MGSS) preconditioner as well as the MGSS iteration method is derived in this paper, which generalize the modified shift-splitting (MSS) preconditioner and the MSS iteration method newly developed by Huang and Su (J. Comput. Appl. Math. 317:535–546, 2017), respectively. The convergent and semi-convergent analyses of the MGSS iteration method are presented, and we prove that this method is unconditionally convergent and semi-convergent. Meanwhile, some spectral properties of the preconditioned matrix are carefully analyzed. Numerical results demonstrate the robustness and effectiveness of the MGSS preconditioner and the MGSS iteration method and also illustrate that the MGSS iteration method outperforms the generalized shift-splitting (GSS) and the generalized modified shift-splitting (GMSS) iteration methods, and the MGSS preconditioner is superior to the shift-splitting (SS), GSS, modified SS (M-SS), GMSS and MSS preconditioners for the generalized minimal residual (GMRES) method for solving the nonsymmetric saddle point problems. 相似文献
6.
In this paper, we first present a local Hermitian and skew-Hermitian splitting (LHSS) iteration method for solving a class of generalized saddle point problems. The new method converges to the solution under suitable restrictions on the preconditioning matrix. Then we give a modified LHSS (MLHSS) iteration method, and further extend it to the generalized saddle point problems, obtaining the so-called generalized MLHSS (GMLHSS) iteration method. Numerical experiments for a model Navier-Stokes problem are given, and the results show that the new methods outperform the classical Uzawa method and the inexact parameterized Uzawa method. 相似文献
7.
8.
白中治等提出了解非埃尔米特正定线性方程组的埃尔米特和反埃尔米特分裂(HSS)迭代方法(Bai Z Z,Golub G H,Ng M K.Hermitian and skew-Hermitian splitting methodsfor non-Hermitian positive definite linear systems.SIAM J.Matrix Anal.Appl.,2003,24:603-626).本文精确地估计了用HSS迭代方法求解广义鞍点问题时在加权2-范数和2-范数下的收缩因子.在实际的计算中,正是这些收缩因子而不是迭代矩阵的谱半径,本质上控制着HSS迭代方法的实际收敛速度.根据文中的分析,求解广义鞍点问题的HSS迭代方法的收缩因子在加权2-范数下等于1,在2-范数下它会大于等于1,而在某种适当选取的范数之下,它则会小于1.最后,用数值算例说明了理论结果的正确性. 相似文献
9.
Based on the variant of the deteriorated positive-definite and skew-Hermitian splitting (VDPSS) preconditioner developed by Zhang and Gu (BIT Numer. Math. 56:587–604, 2016), a generalized VDPSS (GVDPSS) preconditioner is established in this paper by replacing the parameter α in (2,2)-block of the VDPSS preconditioner by another parameter β. This preconditioner can also be viewed as a generalized form of the VDPSS preconditioner and the new relaxed HSS (NRHSS) preconditioner which has been exhibited by Salkuyeh and Masoudi (Numer. Algorithms, 2016). The convergence properties of the GVDPSS iteration method are derived. Meanwhile, the distribution of eigenvalues and the forms of the eigenvectors of the preconditioned matrix are analyzed in detail. We also study the upper bounds on the degree of the minimum polynomial of the preconditioned matrix. Numerical experiments are implemented to illustrate the effectiveness of the GVDPSS preconditioner and verify that the GVDPSS preconditioned generalized minimal residual method is superior to the DPSS, relaxed DPSS, SIMPLE-like, NRHSS, and VDPSS preconditioned ones for solving saddle point problems in terms of the iterations and computational times. 相似文献
10.
Numerical Algorithms - To improve the performance of alternating positive semidefinite splitting (APSS) preconditioner, we present an improved APSS (IAPSS) preconditioner for the double saddle... 相似文献
11.
Based on the special positive semidefinite splittings of the saddle point matrix, we propose a new alternating positive semidefinite splitting (APSS) iteration method for the saddle point problem arising from the finite element discretization of the hybrid formulation of the time-harmonic eddy current problem. We prove that the new APSS iteration method is unconditionally convergent for both cases of the simple topology and the general topology. The new APSS matrix can be used as a preconditioner to accelerate the convergence rate of Krylov subspace methods. Numerical results show that the new APSS preconditioner is superior to the existing preconditioners. 相似文献
12.
Yu. V. Bychenkov 《Computational Mathematics and Mathematical Physics》2009,49(3):398-408
For a nonsingular symmetric system of linear equations with a saddle point, a Hermitian and skew-Hermitian splitting (HSS) preconditioner is considered. For the preconditioned system, symmetrizability conditions are established under which estimates are derived for the spectrum and the convergence rate of Chebyshev-type algorithms and GMRes. 相似文献
13.
Xiao-Fei Peng 《Journal of Computational and Applied Mathematics》2010,234(12):3411-3423
Based on matrix splittings, a new alternating preconditioner with two parameters is proposed for solving saddle point problems. Some theoretical analyses for the eigenvalues of the associated preconditioned matrix are given. The choice of the parameters is considered and the quasi-optimal parameters are obtained. The new preconditioner with these quasi-optimal parameters significantly improves the convergence rate of the generalized minimal residual (GMRES) iteration. Numerical experiments from the linearized Navier-Stokes equations demonstrate the efficiency of the new preconditioner, especially on the larger viscosity parameter ν. Further extensions of the preconditioner to generalized saddle point matrices are also checked. 相似文献
14.
Hong-Tao Fan Xin-Yun Zhu Bing Zheng 《Journal of Applied Mathematics and Computing》2017,54(1-2):199-212
Recently, Guo et al. proposed a modified SOR-like (MSOR-like) iteration method for solving the nonsingular saddle point problem. In this paper, we further prove the semi-convergence of this method when it is applied to solve the singular saddle point problems under suitable conditions on the involved iteration parameters. Moreover, the optimal iteration parameters and the corresponding optimal semi-convergence factor for the MSOR-like method are determined. In addition, numerical experiments are used to show the feasibility and effectiveness of the MSOR-like method for solving singular saddle point problems, arising from the incompressible flow problems. 相似文献
15.
We present a preconditioner for saddle point problems. The proposed preconditioner is extracted from a stationary iterative method which is convergent under a mild condition. Some properties of the preconditioner as well as the eigenvalues distribution of the preconditioned matrix are presented. The preconditioned system is solved by a Krylov subspace method like restarted GMRES. Finally, some numerical experiments on test problems arisen from finite element discretization of the Stokes problem are given to show the effectiveness of the preconditioner. 相似文献
16.
Parameterized preconditioning for generalized saddle point problems arising from the Stokes equation
Zheng Li Tie ZhangChang-Jun Li 《Journal of Computational and Applied Mathematics》2011,236(6):1511-1520
A parameterized preconditioning framework is proposed to improve the conditions of the generalized saddle point problems. Based on the eigenvalue estimates for the generalized saddle point matrices, a strategy to minimize the upper bounds of the spectral condition numbers of the matrices is given, and the explicit expression of the quasi-optimal preconditioning parameter is obtained. In numerical experiment, parameterized preconditioning techniques are applied to the generalized saddle point problems derived from the mixed finite element discretization of the stationary Stokes equation. Numerical results demonstrate that the involved preconditioning procedures are efficient. 相似文献
17.
Parameterized preconditioning for generalized saddle point problems arising from the Stokes equation
《Journal of Computational and Applied Mathematics》2012,236(6):1511-1520
A parameterized preconditioning framework is proposed to improve the conditions of the generalized saddle point problems. Based on the eigenvalue estimates for the generalized saddle point matrices, a strategy to minimize the upper bounds of the spectral condition numbers of the matrices is given, and the explicit expression of the quasi-optimal preconditioning parameter is obtained. In numerical experiment, parameterized preconditioning techniques are applied to the generalized saddle point problems derived from the mixed finite element discretization of the stationary Stokes equation. Numerical results demonstrate that the involved preconditioning procedures are efficient. 相似文献
18.
Seryas Vakili Ghodrat Ebadi Cornelis Vuik 《Numerical Linear Algebra with Applications》2023,30(4):e2478
In this article, a parameterized extended shift-splitting (PESS) method and its induced preconditioner are given for solving nonsingular and nonsymmetric saddle point problems with nonsymmetric positive definite (1,1) part. The convergence analysis of the iteration method is discussed. The distribution of eigenvalues of the preconditioned matrix is provided. A number of experiments are given to verify the efficiency of the method for solving nonsymmetric saddle-point problems. 相似文献
19.
20.
C. Calgaro P. Deuring D. Jennequin 《Numerical Methods for Partial Differential Equations》2006,22(6):1289-1313
In this article we consider the stationary Navier‐Stokes system discretized by finite element methods which do not satisfy the inf‐sup condition. These discretizations typically take the form of a variational problem with stabilization terms. Such a problem may be transformed by iteration methods into a sequence of linear, Oseen‐type variational problems. On the algebraic level, these problems belong to a certain class of linear systems with nonsymmetric system matrices (“generalized saddle point problems”). We show that if the underlying finite element spaces satisfy a generalized inf‐sup condition, these problems have a unique solution. Moreover, we introduce a block triangular preconditioner and we show how the eigenvalue bounds of the preconditioned system matrix depend on the coercivity constant and continuity bounds of the bilinear forms arising in the variational problem. Finally we prove that the stabilized P1‐P1 finite element method proposed by Rebollo is covered by our theory and we show that the condition number of the preconditioned system matrix is independent of the mesh size. Numerical tests with 3D stationary Navier‐Stokes flows confirm our results. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2006 相似文献