首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Supramolecular assembly of proteins on surfaces and vesicles was investigated by site-selective incorporation of a supramolecular guest element on proteins. Fluorescent proteins were site-selectively labeled with bisadamantane by SNAP-tag technology. The assembly of the bisadamantane functionalized SNAP-fusion proteins on cyclodextrin-coated surfaces yielded stable monolayers. The binding of the fusion proteins is specific and occurs with an affinity in the order of 10(6) M(-1) as determined by surface plasmon resonance. Reversible micropatterns of the fusion proteins on micropatterned cyclodextrin surfaces were visualized by using fluorescence microscopy. Furthermore, the guest-functionalized proteins could be assembled out of solution specifically onto the surface of cyclodextrin vesicles. The SNAP-tag labeling of proteins thus allows for assembly of modified proteins through a host-guest interaction on different surfaces. This provides a new strategy in fabricating protein patterns on surfaces and takes advantage of the high labeling efficiency of the SNAP-tag with designed supramolecular elements.  相似文献   

2.
Phospholipid liposomes (100-200 nm diameter) are deposited onto solid substrates after stabilizing them against fusion with the solid by allowing charged nanoparticles to adsorb at approximately 25% surface coverage. The immobilized vesicles remain stable over a period of days. Epifluorescence imaging shows that they diffuse freely over surfaces with the same charge but adsorb tightly onto surfaces with opposite charge. Nanoparticle adsorption to surface patterns of opposite charge provides a facile method to create large-scale surface-supported arrays of intact liposomes. This surface attachment method is simple chemically and applies generally for solid surfaces that can be hydrophobic or hydrophilic. Offering routes to localize proteins and other vesicle-contained objects at surfaces in tailored spatial patterns, these immobilized liposome arrays may find diverse applications in the emerging field of nanobiotechnology.  相似文献   

3.
Surface patterning has become an important discipline of biologically oriented surface science over the past decades. Many methods have been developed that allow the formation of patterns on the micro- and nanoscale. This Opinion discusses the role of protein adsorption in patterning technologies, highlighting how it can be used as an integrated part of the patterning process, how it can be controlled by patterns with appropriate properties, and how it may lead to disruption of formed patterns if not properly accounted for. Recent examples from literature are used to emphasize some of the most interesting developments in the field, such as novel surface chemistries only allowing specific protein adsorption, directed self-sorting adsorption of proteins on patterned surfaces, and control of protein adsorption through nanopatterning.  相似文献   

4.
The controlled surface assembly of biological or appropriately designed synthetic host systems on optically or electrochemically-active surfaces has advanced considerably during the past decade. Recent activities, from the authors laboratory and elsewhere, and possible future directions are discussed herein.  相似文献   

5.
We have investigated the adsorption of albumin and fibrinogen onto PET (polyethylene terephthalate) and glass surfaces and how pre-adsorption of albumin onto these surfaces can affect the adsorption of later added fibrinogen. For materials and devices being exposed to blood, adsorption of fibrinogen is often a non-wanted event, since fibrinogen is part of the clotting cascade and unspecific adsorption of fibrinogen can have an influence on the activation of platelets. Albumin is often used as blocking agent for avoiding unspecific protein adsorption onto surfaces in devices designed to handle biological samples, including protein solutions. It is based on the assumption that proteins adsorbs as a monolayer on surfaces and that proteins do not adsorb on top of each other. By labelling albumin and fibrinogen with two different radioactive iodine isotopes that emit gamma radiation with different energies, the adsorption of both albumin and fibrinogen has been monitored simultaneously on the same sample. Information about topography and coverage of adsorbed protein layers has been obtained using AFM (Atomic Force Microscopy) analysis in liquid. Our studies show that albumin adsorbs in a multilayer fashion on PET and that fibrinogen adsorbs on top of albumin when albumin is pre-adsorbed on the surfaces.  相似文献   

6.
We present a strategy for the analysis of cell surface carbohydrate expression patterns using lectin arrays fabricated on gold surfaces. Antibody and glycoprotein binding experiments showed that the lectins were effectively immobilized on the surface and retained their carbohydrate-binding specificities. The approach was demonstrated in the analysis of carbohydrate expression on two mammalian cell lines.  相似文献   

7.
Controllable cell growth on the defined areas of surfaces is important for potential applications in biosensor fabrication and tissue engineering. In this study, controllable cell growth was achieved by culturing 293 T fibroblast cells on a mica surface which had been patterned with collagen strips by a microcontact printing (μCP) technique. The collagen area was designed to support cell adhesion and the native mica surface was designed to repel cell adhesion. Consequently, the resulting cell patterns should follow the micro-patterns of the collagen. X-ray photoelectron spectroscopy (XPS), water contact angle (WCA) measurement, atomic-force microscope (AFM) observation, and force-curve measurement were used to monitor property changes before and after the collagen adsorption process. Further data showed that the patterned cells were of good viability and able to perform a gene-transfection experiment in vitro. This technique should be of potential applications in the fields of biosensor fabrication and tissue engineering. Figure Controllable cells growth has been achieved by culturing 293T fibroblast cells on the mica surface which had been patterned with collagen strips by microcontact printing (μCP) technique  相似文献   

8.
A new strategy has been well designed to form upended taper-shaped cuprous thiocyanate (hereafter abbreviated as CuCNS) arrays on a copper substrate with use of a simple solution-phase method at room temperature. This method consists of a liquid-solid reaction between a solution of thiocyanate ammonium and the copper substrate itself in the assistance of formamide. Novel CuCNS arrays are approximately perpendicular to copper substrate surfaces. Every single crystal shows an upended taper-like morphology (i.e., the tip end points into the surface of copper substrate and the other big end of the taper exposes out, like a dart thrusting into the copper substrate). On the basis of structure and chemical bond analysis, CuCNS crystals tend to grow along the c-axis, which is essential for the formation of CuCNS arrays on a copper substrate. This approach also provides a facile strategy to produce different patterns on different copper substrates, which may be applicable to the synthesis of other inorganic materials with various potential applications.  相似文献   

9.
表面光接枝聚合反应新进展   总被引:1,自引:0,他引:1  
表面性能对高分子材料应用至关重要,但多数聚烯烃材料表面惰性,需对表面进行改性或功能化.紫外光引发表面光接枝聚合反应具有诸多优势,因而获得广泛应用.作者以本实验室近年的研究为基础,结合这一领域国际上的部分重要研究成果,概述了实施表面光接枝聚合反应的一些新方法:控制,活性表面光接枝聚合、自引发光接枝聚合、暗区表面光接枝聚合、表面光接枝-交联聚合以及表面小分子光化学反应等.  相似文献   

10.
By alternate UV and visible light irradiation, reversible topographical changes were observed on a newly synthesized diarylethene microcrystalline surface between the rough crystalline surface of an open-ring isomer and flat eutectic surfaces. The contact angle changes of a water droplet between 80° and 150° and peak intensities changes of the open-ring isomer in XRD patterns within 2 h of repeating cycle were observed. The results indicated that reversibly photogenerated rod-shaped crystals on the surface were produced based on the lattice of the open-ring isomer crystals in the subphase.  相似文献   

11.
This study presents a simple method for the fabrication of an orthogonal surface that can be applied for cell patterning without the need to immobilize specific adhesive peptides, proteins, or extracellular matrix (ECM) for cell attachment. Micromolding in capillaries (MIMIC) produced two distinctive regions. One region contained poly(ethylene glycol)–poly(d,l-lactide) diblock copolymer (PEG–PLA) designed to provide a biological barrier to the nonspecific binding of proteins and fibroblast cells. The other region was coated with polyelectrolyte (PEL) to promote the adhesion of biomolecules including proteins and cells. Resistance to the adsorption of proteins increased with the length of PEG and PLA chains because the longer PEG chain increased the PEG layer thickness and the longer PLA chain induced stronger interaction with the PEL surface. The PEG5k–PLA2.5k (20 mg/ml) was the most efficient candidate for the prevention of protein adhesion among the PEG–PLA copolymers examined. The orthogonal functionality of prepared surfaces having PEL regions and background PEG–PLA regions resulted in rapid patterning of biomolecules. Fluorescein isothiocyanate-tagged bovine serum albumin (FITC-BSA) and fibroblast cells successfully adhered to the exposed PEL surfaces. Although methods for cell patterning generally require an adhesive protein layer on the desired area, these fabricated surfaces without adhesive proteins provide a gentle microenvironment for cells. In addition, our proposed approach could easily control patterns, sizes, and shapes at micron scale.  相似文献   

12.
The strength of the interfacial interactions and the length scale over which these interactions occur are key factors in understanding the thin film behavior of polymer blends and diblock copolymers, adhesion, wettability, and recognition processes of cells and random heteropolymers on surfaces. Here, gradient heterogeneous surface topographies were prepared using thin films of mixtures of homopolymers and diblock copolymers to vary the lateral size scale of heterogeneities from the microscopic to nanoscopic. Dewetting, phase separation, and cell adhesion were used to demonstrate the utility of these surfaces having gradient heterogeneous topographies. By tuning the lateral size scale of the heterogeneities, surface patterns can be engineered to meet a specific function. Gradient surfaces offer a straightforward method to optimize various length scales of heterogeneity.  相似文献   

13.
We report a simple photolithographic approach for the creation and micropatterning of chemical functionality on polymer surfaces by use of surface-active block copolymers that contain protected photoactive functional groups. The block copolymers self-assemble at the substrate-air interface to generate a surface that is initially hydrophobic with low surface tension but that can be rendered hydrophilic and functional by photodeprotection with UV radiation. The block copolymer employed, poly(styrene-b-tert butyl acrylate), segregates preferentially to the surface of a polystyrene substrate because of the low surface tension of the polyacrylate blocks. The strong adsorption of block copolymers causes a bilayer structure to form presenting a photoactive polyacrylate layer at the surface. In the example described, the tert-butyl ester groups on the polyacrylate blocks are deprotected by exposure to UV radiation in the presence of added photoacid generators to form surface carboxylic acid groups. Surface micropatterns of carboxylic acid groups are generated by UV exposure through a contact mask. The success of surface chemical modification and pattern formation is demonstrated by X-ray photoelectron spectroscopy and contact angle measurements along with imaging by optical and fluorescence microscopy methods. The resultant chemically patterned surfaces are then used to template patterns of various biomolecules by means of selective adsorption, covalent bonding and molecular recognition mechanisms. The surface modification/patterning concept can be applied to virtually any polymeric substrate because protected functional groups have intrinsically low surface tensions, rendering properly designed block copolymers surface active in almost all polymeric substrates.  相似文献   

14.
Vertically aligned TiO(2) nanotube and Al(2)O(3) nanopore arrays have been obtained by pattern guided anodization with uniform concave depths. There are some studies about the effect of surface curvature on the growth of Al(2)O(3) nanopores. However, the surface curvature influence on the development of TiO(2) nanotubes is seldom studied. Moreover, there is no research about the effect of heterogeneous concave depths of the guiding patterns on the anodized TiO(2) nanotube and Al(2)O(3) nanopore characteristics, such as diameter, growth direction, and termination/bifurcation. In this study, focused ion beam lithography is used to create concave patterns with heterogeneous depths on flat surfaces and with uniform depths on curved surfaces. For the former, bending and bifurcation of nanotubes/nanopores are observed after the anodization. For the latter, bifurcation of a large tube into two smaller tubes occurs on concave surfaces, while termination of existing tubes occurs on convex surfaces. The growth direction of all TiO(2) nanotubes is perpendicular to the local surface and thus is different on different facets of the same Ti foil. At the edge of the Ti foil where two facets meet, the nanotube growth direction is bent, resulting in a large stress release that causes the formation of cracks.  相似文献   

15.
The controlled addition of structurally defined components to live cell membranes can facilitate the molecular level analysis of cell surface phenomena. Here we demonstrate that cell surfaces can be engineered to display synthetic bioactive polymers at defined densities by exogenous membrane insertion. The polymers were designed to mimic native cell-surface mucin glycoproteins, which are defined by their dense glycosylation patterns and rod-like structures. End-functionalization with a hydrophobic anchor permitted incorporation into the membranes of live cultured cells. We probed the dynamic behavior of cell-bound glycopolymers bearing various hydrophobic anchors and glycan structures using fluorescence correlation spectroscopy (FCS). Their diffusion properties mirrored those of many natural membrane-associated biomolecules. Furthermore, the membrane-bound glycopolymers were internalized into early endosomes similarly to endogenous membrane components and were capable of specific interactions with protein receptors. This system provides a platform to study cell-surface phenomena with a degree of chemical control that cannot be achieved using conventional biological tools.  相似文献   

16.
A novel supramolecularly assembled surface architectural method was developed, which involved a self-assembling process of amphiphilic molecules and a subsequent photochemical process. The specially designed molecules were cascade “tree” molecules composed of a phenylazido group as root, an aliphatic hydrocarbon chain as stem, and two or three tris(hydroxymethyl)aminomethane groups as leaves. Using a horizontal lifting method, unimolecular assemblies which formed at an air/water interface were transferred to polyethylene (PE) surfaces. Upon ultraviolet irradiation, these molecules were covalently fixed on the surfaces due to the photochemical reactivity of the phenylazido group. Treated surfaces became wettable with water, indicating that hydrophilic hemispheres were located at the outer surface region of the PE surfaces. Bimolecular assemblies composed of cascade molecules and noncascade molecules with a hydroxyl group at a terminus exhibited lower advancing and receding contact angles and reduced hysteresis than those of unimolecular ones, indicating that these bimolecular assemblies have a well-structured molecular organization with a high degree of packing. © 1997 John Wiley & Sons, Inc.  相似文献   

17.
Synthetic routes toward carborane-wheeled nanocars   总被引:1,自引:0,他引:1  
A new set of aryleneethynylene derivatives bearing three, four, and six p-carboranes as potential wheels attached to a semirigid chassis have been designed and synthesized. These molecules are expected to move in predetermined patterns on atomically smooth surfaces, depending on their specific configuration.  相似文献   

18.
This paper reports on the preparation of a porous silicon-based material covalently functionalized with cavitand receptors suited for the detection of organophosphorus vapors. Two different isomeric cavitands, both containing one acid group at the upper rim, specifically designed for covalent anchoring on silicon, were grafted on H-terminated porous silicon (PSi) by thermal hydrosilylation. The covalently functionalized surfaces and their complexation properties were characterized by combining different analytical techniques, namely X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and mass spectroscopy analysis coupled with thermal desorption experiments. Complexation experiments were performed by exposing both active surfaces and a control surface consisting of PSi functionalized with a structurally similar but inactive methylene-bridged cavitand (MeCav) to dimethyl methylphosphonate (DMMP) vapors. Comparison between active and inactive surfaces demonstrated the recognition properties of the new surfaces. Finally, the nature of the involved interactions, the energetic differences between active and inactive surfaces toward DMMP complexation, and the comparison with a true nerve gas agent (sarin) were studied by DFT modeling. The results revealed the successful grafting reaction, the specific host-guest interactions of the PSi-bonded receptors, and the reversibility of the guest complexation.  相似文献   

19.
The molecular-dynamics method is used to study the adsorption of A-graft-B macromolecules on patterned planar surfaces consisting of regions a and b that specifically interact with chain units. Surfaces with patterns in the form of circles of different radii and a spiral stripe are discussed. Effective recognition occurs during the adsorption of an A-graft-B macromolecule on these patterned surfaces. Recognition means that, for a proper combination of the architecture of a macromolecule and the energy parameters of its interaction with the plane regions, the macromolecule can be located along the boundary of a circle with a given radius or can stay in a given location of the spiral stripe.  相似文献   

20.
Analysis of droplet evaporation on a superhydrophobic surface   总被引:1,自引:0,他引:1  
The evaporation process for small, 1-2-mm-diameter droplets of water from patterned polymer surfaces is followed and characterized. The surfaces consist of circular pillars (5-15 microm diameter) of SU-8 photoresist arranged in square lattice patterns such that the center-to-center separation between pillars is 20-30 microm. These types of surface provide superhydrophobic systems with theoretical initial Cassie-Baxter contact angles for water droplets of up to 140-167 degrees, which are significantly larger than can be achieved by smooth hydrophobic surfaces. Experiments show that on these SU-8 textured surfaces water droplets initially evaporate in a pinned contact line mode, before the contact line recedes in a stepwise fashion jumping from pillar to pillar. Provided the droplets of water are deposited without too much pressure from the needle, the initial state appears to correspond to a Cassie-Baxter one with the droplet sitting upon the tops of the pillars. In some cases, but not all, a collapse of the droplet into the pillar structure occurs abruptly. For these collapsed droplets, further evaporation occurs with a completely pinned contact area consistent with a Wenzel-type state. It is shown that a simple quantitative analysis based on the diffusion of water vapor into the surrounding atmosphere can be performed, and estimates of the product of the diffusion coefficient and the concentration difference (saturation minus ambient) are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号