首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用合成的催化剂五甲基环戊二烯基三烯丙氧基钛「Cp^*Ti(OAllyl)3」与改性甲基铝氧烷(mMAO)组成催化体系棉乙烯/丙烯共聚物,红外分析显示,乙醚可溶和己烷可溶两个级分的化学结构几乎相同GPC测试结果表明共聚物分子量高,分子量分布窄。X-射线衍射分析,大多数样品的图谱为宽的弥散峰,表明它们是无规共的;只有当乙烯含量很高时,样品的谱图才有较为尖锐的结晶峰,结晶度不高。经热分析(DSC、TG),大多数样品没有出现明显的熔点,只有当乙烯含量很高时才显示出熔点;共聚物的热稳定性较高,DMA分析表明,共聚物品中乙烯含量多的,其储能模量(E′)大一些,共聚物的玻璃温度随着丙烯链节的增多而升高。  相似文献   

2.
改性甲基铝氧烷(mMAO)激活五甲基茂基三氯化钛(Cp TiCl3)催化乙烯 丙烯共聚合,控制两种单体的进料配比,得到单元序列分布不同的共聚物.混合单体中含有少量丙烯,共聚合活性高于相同聚合条件下乙烯均聚合的活性.用1 3C -NMR测定共聚物分子链的微观结构和单元序列分布,计算出单体的竞聚率;结果表明共聚物分子链中两种单体的序列分布均匀.混合单体中丙烯含量较大时,共聚物为完全无规共聚物;而当丙烯含量少时,丙烯链节或短的聚丙烯链段均匀分布于聚乙烯链段之间.共聚物经DSC分析,也证明不存在长序列的聚乙烯链段;因此,即便在进料气体中丙烯含量很少的情况下,共聚物仍然没有明显的熔融温度和结晶性.  相似文献   

3.
采用摩尔含量接近的两个单体乙烯和1-丁烯分别无规共聚聚丙烯样品,用三氯苯进行室温可溶物和不溶物的分离,采用凝胶渗透色谱、13C核磁共振波谱及热分析等方法对两种共聚聚合物及其分离物进行表征,探讨了乙烯和1-丁烯作为共聚单体对聚丙烯树脂结构和性能的影响.结果表明,与乙烯相比,1-丁烯更趋向于共聚在较长的聚丙烯分子链上,其结果导致丙烯/1-丁烯无规共聚聚丙烯的可溶物含量更低.同时,对两种无规共聚物结晶性能的差异以及对光学性能和动态力学性能的影响研究表明,如果共聚单体含量接近,丙烯/1-丁烯无规共聚物结晶度更高;透明制品雾度相同时,丙烯/1-丁烯无规共聚物的刚性更高.  相似文献   

4.
对顺-1,4含量为100%的高顺式聚异戊二烯(HCPI)进行加氢反应,得到了序列结构高度规整的乙烯-丙烯交替共聚物(alt-EP).所用的HCPI有适当的分子量(Mn=41×104)和极窄的分子量分布(Mw/Mn=1.02).HCPI的加氢反应以环烷酸镍和三异丁基铝为催化剂,在60℃和4.0MPa氢压的条件下反应3h,加氢产物的加氢度为100%.GPC测试结果显示所得乙烯-丙烯交替共聚物保持了窄分布的特点,表明HCPI加氢后未发生交联和降解反应;NMR,FTIR和广角X射线衍射测试结果表明此乙烯-丙烯交替共聚物具有高度规整的序列结构,为完全交替结构的乙烯-丙烯共聚物.并通过TGA和DSC对乙烯-丙烯交替共聚物的热性能进行了表征.  相似文献   

5.
采用合成的催化剂五甲基环戊二烯基三烯丙氧基钛 [Cp Ti(OAllyl) 3]与改性甲基铝氧烷 (mMAO)组成新型催化体系进行乙烯 /丙烯共聚合 ,考察了助催化剂 (mMAO)中TMA含量、气体配比、聚合温度、助催化剂和主催化剂浓度等因素对共聚合活性及产物分子量的影响 ,研究其变化规律 .结果表明 ,Cp Ti(OAllyl) 3/mMAO催化体系中钛的价态分布为Ti(Ⅳ )时对共聚合更为有利 ,制得了乙烯 /丙烯无规共聚物弹性体  相似文献   

6.
仇春阳  郭方  李杨  侯召民 《高分子学报》2016,(12):1662-1668
以(C5Me4Si Me3)Sc(CH2C6H4NMe2-o)2和[Ph3C][B(C6F5)4]组成的单茂钪催化体系,考察了其催化不同取代基团苯乙烯衍生物均聚合以及与乙烯共聚合的性能.结果表明单茂钪催化体系可以催化对甲基苯乙烯和对乙烯苯基二甲基硅烷均聚合,高活性(106g聚合物(mol Sc)-1h-1)地获得高间规聚合物;催化二乙烯基苯和乙烯苯基-1-丁烯聚合会发生不同程度的交联反应.在1.01×105Pa乙烯压力下,单茂钪催化体系分别催化对甲基苯乙烯、对乙烯苯基二甲基硅烷与乙烯与共聚合,获得了组成和分子量可控的乙烯/对甲基苯乙烯、乙烯/对乙烯苯基二甲基硅烷共聚物,共聚合活性高达106g聚合物(mol Sc)-1h-1.通过1H-NMR、13CNMR、GPC和DSC对共聚物组成、结构和热性能进行了分析表征.结果表明,在1.01×105Pa乙烯压力下改变苯乙烯衍生物的用量,共聚物中对甲基苯乙烯或对乙烯苯基二甲基硅烷的摩尔含量可以在8 mol%~55 mol%间调控,共聚物含有间规聚对甲基苯乙烯嵌段或间规聚对乙烯苯基二甲基硅烷嵌段、聚乙烯嵌段和乙烯-苯乙烯衍生物的链接序列,共聚物分子量(Mn)可以在3×104~16×104间调控,共聚物具有约127℃的熔点.  相似文献   

7.
用13C NMR测定了由单茂基钛化合物 /mMAO催化体系制备的乙烯 /丙烯共聚物大分子链的立体结构和单体序列分布 ,计算了单体的竞聚率r1=7 91± 0 0 6 ,r2 =0 135± 0 0 3 ,其乘积r1r2 ≈ 1.Fineman Ross计算得到的单体竞聚率与13C NMR测定值相近 ,即r1=7.94,r2 =0 .134,其乘积r1r2 =1 0 4.这表明共聚物是立构无规的 .共聚物经溶剂萃取后 ,乙醚可溶和己烷可溶两个级分中单体的序列分布和竞聚率略有不同 .乙醚可溶级分中丙烯链段稍长 ,而己烷可溶级分中乙烯链段稍长  相似文献   

8.
本文探索了乙烯/丙烯/极性单体三元共聚物的合成方法.乙烯/丙烯/ω-Cl-α-乙烯基单体三元共聚物由于分子中引入了ω-Cl-α-乙烯基极性单体,改变了乙烯丙烯共聚物的化学惰性.我们采用催化剂Cat.L-Pd配位催化乙烯/丙烯/ω-Cl-α-乙烯基单体三元共聚合,合成了极性三元无规共聚物.探讨了催化剂结构、聚合条件对三元共聚合行为的影响,并优化了聚合条件.采用红外光谱(FTIR)、核磁共振碳谱(氢谱)(~(13)C(~1H)NMR)、示差扫描量热(DSC)和高温凝胶渗透色谱(GPC)等方法研究了共聚物的结构与性能.FTIR与~(13)C(~1H)NMR结果表明,催化剂Cat.L-Pd能够有效催化乙烯/丙烯/ω-Cl-α-乙烯基单体三元共聚合,共聚物中ω-氯代极性单体的插入量达3.6 mol%.极性单体不发生均聚合反应,但能够有效参与乙烯和丙烯的共聚合反应,形成三元无规共聚物.丙烯能够发生均聚合反应,但是不能形成聚丙烯长链段,主要发生乙烯与丙烯共聚合反应.乙烯最易发生聚合反应,并能够形成较长链段的聚乙烯.共聚物的Mw高于2×10~5g/mol.分子量分布在1.6~3.0,说明该类催化剂催化乙烯/丙烯/ω-Cl-α-乙烯基单体三元共聚合行为遵循单中心聚合机理.  相似文献   

9.
采用(C_5Me_4SiMe_3)Sc(CH_2C_6H_4NMe_2-o)_2(1)、(C_5Me_4SiMe_3)Sc(CH_2SiMe_3)_2(THF)(2)两种单茂钪催化剂,考察了其催化10-二甲基硅基-1-癸烯(Decene-SiH)均聚合以及与乙烯共聚合的性能,并通过NMR、GPC和DSC对所获共聚物的微观结构和热性能进行了分析.结果表明,在室温1.01×10~5 Pa乙烯压力下,单茂钪2对乙烯与Decene-SiH共聚合表现了极高的催化活性(10~5 g聚合物mol_(Sc)~(-1) h~(-1)),Decene-SiH转化率达99%.改变Decene-SiH用量,获得了组成可控(Decene-SiH含量8 mol%~50 mol%)、高分子量(7.2×10~4~10.0×10~4)、窄分布(M_w/M_n=1.35~1.63)的乙烯/Decene-SiH共聚物.当共聚物中Decene-SiH含量小于12 mol%时,Decene-SiH孤立插入聚乙烯链中;当共聚物中Decene-SiH含量大于26 mol%时,Decene-SiH可孤立和连续插入聚乙烯链中.不同组成的乙烯/Decene-SiH共聚物具有一个118~130℃的熔点,共聚物中Decene-SiH含量为50 mol%时具有一个-71℃的玻璃化转变温度.共聚物中Decene-SiH含量增加,聚乙烯结晶度明显降低.乙烯/Decene-SiH共聚物中"Si-H"基团与烯丙基缩水甘油醚、N,N-二甲基丙烯酰胺、p-N,N-二甲基氨基苯乙烯和甲基丙烯酸甲酯4种物质在Karstedt's催化剂作用下发生硅氢加成反应,实现了"Si-H"基团100%转化,有效地将乙烯/Decene-SiH共聚物中"Si-H"基团转变为其他的极性基团,获得了4种具有亲水性质的功能化聚乙烯.  相似文献   

10.
采用(C5Me4Si Me3)Sc(CH2C6H4NMe2-o)2(1)和(C5Me4Si Me3)Sc(CH2Si Me3)2(THF)(2)2种单茂钪催化剂,考察了其催化对氟苯乙烯均聚合以及与乙烯共聚合的性能,并通过1H-NMR、13C-NMR、GPC和DSC对所获聚合物的微观结构和热性能进行了分析.结果表明,单茂钪1可以催化对氟苯乙烯均聚合,获得间规聚合物,但聚合活性较低.采用单茂钪2,控制溶剂种类和用量可以获得间规和无规2类聚合物:控制对氟苯乙烯单体在氯苯溶剂中浓度低于2.4 mol/L,可获得间规聚对氟苯乙烯(rrrr≥99%,Tm≥319oC),且聚合活性高达105 g polymer molSc-1 h-1;控制对氟苯乙烯单体在氯苯溶剂中浓度高于4.8 mol/L或者选用氟苯做溶剂,可获得无规聚对氟苯乙烯;固定单体浓度调控对氟苯乙烯和催化剂的比例,可获得分子量(Mn)在3.10×104~2.08×105间调控的间规和无规聚对氟苯乙烯.在常压乙烯下,单茂钪1和2还可以催化对氟苯乙烯与乙烯共聚合,获得了组成(对氟苯乙烯含量41 mol%~88 mol%)和分子量(3.10?104~1.84?105)可控的两元共聚物,共聚合活性高达106 g polymer molSc-1 h-1.当共聚物中乙烯含量高于对氟苯乙烯含量时,共聚物仅有源自聚乙烯嵌段的熔点(119~126oC).当共聚物中对氟苯乙烯含量高于乙烯含量时,共聚物出现聚对氟苯乙烯嵌段;由单茂钪1获得聚对氟苯乙烯嵌段为间规结构,共聚物具有熔点(269~282oC)和玻璃化转变温度(Tg,79~82oC);单茂钪2获得聚氟苯乙烯嵌段为无规结构,共聚物仅有1个Tg(94~96oC).  相似文献   

11.
用13C-NMR测定了由单茂基钛化合物/mMAO催化体系制备的乙烯/丙烯共聚物大分子链的立体结构和单体序列分布,计算了单体的竞聚率r1=7.91±0.06,r2=0.135±0.03,其乘积r1r2≈1.Fineman-Ross计算得到的单体竞聚率与13C-NMR测定值相近,即r1=7.94,r2=0.134,其乘积r1r2=1.04.这表明共聚物是立构无规的.共聚物经溶剂萃取后,乙醚可溶和己烷可溶两个级分中单体的序列分布和竞聚率略有不同.乙醚可溶级分中丙烯链段稍长,而己烷可溶级分中乙烯链段稍长.  相似文献   

12.
通过双(环戊二烯基)二氯化锆(Cp2ZrCl2)催化剂和改良的甲基铝氧烷(MMAO)助催化剂, 合成了无机-有机杂化共聚物. 研究了2种具有不同单乙烯基反应基团的笼型倍半硅氧烷(POSS)与乙烯的聚合. 对共聚产物的结构、 热力学性质、 分子量及其分布等进行了研究. 共聚单体(POSS)的插入率在0.01%~0.30%之间, 随着共聚单体在共聚物中摩尔分数的增大, 聚合物的熔点和熔解热降低. 共聚物的热重分析结果显示, 乙烯-POSS共聚物拥有更高的热分解温度以及较高的热分解残留量. 随着POSS的加入, 聚合物的分子量明显提高, 聚合物的分子量分布变宽.  相似文献   

13.
通过氯磺化共聚物的水解合成了乙烯-丙烯共聚物磺酸钠离聚物,对离聚物的结晶度和其中硫、氯、钠元素的含量进行了表征.当离子含量达到5—7 mol%时,离聚物的LAXD曲线出现离子峰;DSC指出T_g急剧升高,而低于此离子浓度的离聚物均不出现这些现象.反映出此离子浓度下的离聚物,离子基因可能聚集形成离子簇结构.  相似文献   

14.
应用扫描电子显微镜(SEM)研究乙烯-丙烯嵌段共聚物和聚乙烯/聚丙烯共混物的冲击断裂表面形态。结果表明,这二种材料力学性能的差别,明显地反映在它们的断面形态上。前者显示出一种典型的韧性断裂特征;后者则呈现出一种剥离层状结构。~(13)C-NMR分析结果表明,在上述乙烯-丙烯嵌段共聚物中,确实存在着乙烯-丙烯共聚链段。这是该材料具有良好的抗冲击性能的主要原因。  相似文献   

15.
本文用过氧化二碳酸二异丙酯为引发剂,丙酮为分子量调节剂,对偏氟乙烯-四氟乙烯共聚反应进行了研究,并制得了不同组成,不同分子量的样品,用色谱分析方法分析在共聚反应过程中单体组成的变化,方便地确定了偏氟乙烯-四氟乙烯共聚反应中的“恒比”组成范围,并能控制共聚物组成的均匀性,丙酮有效地调节了共聚物的分子量,对共聚物的性能测定表明,它们有很好的机械性能和热稳定性,在“恒比”组成范围的共聚物的热电系数有一个极大值,它对应于熔点的极小值。  相似文献   

16.
以载体型钛系齐格勒-纳塔催化剂进行了丙烯和乙烯无规共聚合的研究。对聚合温度、铝钛摩尔比、给电子体浓度和加氢等行为作了考察。共聚合速度和共聚物的比浓粘度呈规律性变化。用~(13)C-NMR和DSC测定了共聚物的组成、序列分布、熔点和结晶度.结果表明,在共聚合反应速度曲线上,在丙烯和乙烯分别为10mol%组成处,出现两个最大值。随共聚物中乙烯含量增加(2—10mol%),其熔点和结晶度降低,DSC峰变低、变宽,在乙烯含量达10mol%处出现双峰(128/116℃)反映出无规共聚链出现不同的序列分布。  相似文献   

17.
乙烯含量对抗冲丙烯共聚物等温结晶行为的影响   总被引:1,自引:0,他引:1  
利用DSC研究了乙烯含量不同的4种抗冲丙烯共聚物的等温结晶动力学.结果表明4种样品在考察的温度范围内(126~130℃)的等温结晶动力学完全符合Avrami方程,并得到了不同结晶温度下Avrami方程的结晶动力学参数k,n和t1/2,随着样品中乙烯含量的增加,Avrami指数(n)随温度变化不大,样品的结晶过程可能属于三维扩散控制的成核增长,4种样品的结晶活化能ΔE在279.5~343.1 kJ/mol范围内,且随乙烯含量增加,结晶活化能增大,充分说明样品中的乙烯含量是影响其结晶活化能的主要因素.结晶分级分析测试结果显示,随着乙烯含量的增加,聚丙烯均聚物部分链结构规整性提高,结构规整、可结晶的长序列含量在减少,可见乙烯含量的变化规律直接决定上述参数的变化规律.  相似文献   

18.
短链支化聚乙烯的合成与表征   总被引:1,自引:0,他引:1  
合成了两类结构明确的乙烯共聚物, 通过FTIR, GPC, 1H NMR和13C NMR表征了产物的分子结构, 分别研究了分子量和短链支化含量对两类共聚物结晶性能的影响. 采用阴离子聚合制备分子量(Mw)20000~110000、分子量分布为1.1的1,2-结构摩尔分数为7%左右的聚丁二烯. 加氢反应后得到乙烯/1-丁烯模型共聚物的熔点和结晶度随着分子量的增加而下降. 采用茂金属催化剂Et[Ind]2ZrCl2催化乙烯与1-己烯共聚合, 制备分子量为100000左右, 共聚单体摩尔分数为0~5.5%的乙烯/1-己烯共聚物, DSC结果表明其熔点和结晶度随着共聚物中1-己烯含量的升高而降低.  相似文献   

19.
以球形高效负载的TiCl4/MgCl2/邻苯二甲酸二异丁酯(DIBP)为催化剂, 采用本体聚合方法进行丙烯与1-丁烯共聚合研究. 考察了共单体效应对共聚活性及聚合物立构规整性的影响; 表征了共聚物的结构. 结果表明, 随着1-丁烯/丙烯投料比的增加, 聚合活性呈先升高后降低的趋势, 在1-丁烯/丙烯摩尔投料比为0.26条件下聚合活性达到最高, 并随着共聚物中1-丁烯含量的增加, 共聚物的熔点明显下降, 分子量降低, 分子量分布变窄, 同时共聚物力学性能有明显提高, 透明度逐渐增加.  相似文献   

20.
合成了6种三齿β-酮亚胺钒(Ⅲ)配合物{[R)X(C_6H_4)N=CH(C_6H_5)NC_(10)H_7O]VCl_2(THF):2a,R=CH_3,X=S;2b,R=CF_3,X=S;2c,R=Ph,X=S;2d,R=~tBu,X=S;2e,R=Ph_2,X=P;2f,R=Ph,X=O},并对其结构进行了表征和证明.2a~2f在催化乙烯均聚及其与环烯烃共聚时表现出了较高的催化活性和较为优异的稳定性,所得聚合物的分子量均呈单峰分布.在催化乙烯与降冰片烯(NBE)共聚以及乙烯与外型-1,4,4a,9,9a,10-六氢-9,10(1′,2′)-桥苯亚基-1,4-桥亚甲基蒽(HBM)共聚时,部分催化剂表现出了"正共单体效应".催化所得乙烯/NBE共聚物的分子量为43.1~66.4 kg/mol,NBE单元含量为30.9 mol%~42.1mol%,玻璃化转变温度为84~105°C;乙烯/HBM共聚物的分子量为90.2~138 kg/mol,HBM单元含量为14.7 mol%~25.0 mol%,玻璃化转变温度为173~188°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号