首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Fura-2荧光探针研究Ca2+对大肠杆菌细胞的跨膜作用   总被引:5,自引:0,他引:5  
以Fura-2/AM作为荧光探针,研究了Ca^2 对大肠杆菌HB101细胞的跨膜作用.考察了不同浓度外源钙离子处理不同生长时期细胞的跨膜行为,并采用停流技术测定了荧光动力学.结果表明大肠杆菌在用CaCl2溶液处理后,胞外Ca^2 可大量进入胞内,且进入细胞的钙离子量与胞外钙离子浓度相关;处于对数生长前期的细胞与对数生长后期和稳定期的细胞相比,胞内自身Ca^2 浓度低,但其摄取外源Ca^2 的能力最强,这应该与其生理代谢活性是相关的,而且这一时期是大肠杆菌细胞最易建立人工诱导感受态的时期.该研究对于测定革兰氏阴性菌细胞内Ca^2 浓度及胞外离子的跨膜传导行为,以及探索钙离子诱导的大肠杆菌人工感受态建立的生理机制都具有重要意义.  相似文献   

2.
Ce3+对细胞内游离Ca2+的影响   总被引:7,自引:1,他引:6  
研究了Ce^3 对肝细胞和V79细胞中游离Ca^2 的影响。低浓度的Ce^3 能使肝细胞内游离Ca^2 浓度增高,高浓度的Ce^3 能使肝细胞内游离Ca^2 浓度显著升高。Ce^3 可促进细胞外Ca^2 的内流,高浓度的Ce^3 对细胞是有毒性的。  相似文献   

3.
Na+/Ca2+交换调节的La3+跨淋巴细胞膜的定量研究   总被引:1,自引:1,他引:1       下载免费PDF全文
利用荧光浓度指示剂fura-2研究了La3+能否利用Na+/Ca2+交换系统进入人外周血淋巴细胞以及La3+Na+/Ca2+交换的影响. 并首次用此方法研究了La3+能否在细胞器(主要为内质网和线粒体)中蓄积. 实验结果表明, 用乌本苷预处理细胞并在无Na+介质中测试, 可明显观察到La3+跨膜进入淋巴细胞, 而且胞内La3+的浓度与胞外的La3+浓度成正比. 但当胞外La3+浓度大于0.4 mmol/L时, 不再观察到340/380 nm荧光比值的变化, 此时细胞内La3+浓度约为1.5×10-12mol/L. 当La3+浓度较大时(0.1 mmol/L)抑制Na+/Ca2+交换操纵的Ca2+的进入, 而较低浓度(0.01 mmol/L)时却刺激Ca2+进入. 另外从实验结果可推测La3+可以被依赖ATP的质膜钙泵泵出胞外. 胞内钙库用离子霉素耗竭后, La3+内流过程中再次加入离子霉素后, 可明显观察到340/380 nm荧光比值增大, 说明La3+在细胞器中有一定程度的蓄积. 在模拟胞内离子组分的缓冲液中(pH = 7.05), fura-2对La3+的检测限为10-12mol/L, 对Ca2+的检测限为10-8 mol/L, 并测得fura-2-La3+的络合比为1∶1, 表观离解常数为1.7×10-12 mol/L.  相似文献   

4.
淋巴细胞膜上Na+/Ca2+交换操纵的Eu3+内流的荧光法研究   总被引:1,自引:0,他引:1  
利用Fura-2荧光浓度指示剂法、通过检测360nm激发荧光强度的变化,研究了Eu3+能否利用人外周血淋巴细胞膜上的Na+/Ca2+交换进入细胞。结果表明:用ouabain预处理细胞无Na+介质中测试,当加入Eu3+时,360nm荧光强度发生猝灭,且随着胞外加入的Eu3+浓度的增大而猝灭增强。表明在实验条件下Eu3+可以进入细胞。电压依赖性Ca  相似文献   

5.
细胞内游离离子及离子通道的核磁共振研究   总被引:1,自引:0,他引:1  
生物细胞内游离离子及离:子通道(Ca^2 、Mg^2 、Na^ 、K^ 以及Na^ /Ca^2 和Na^ /Li^ 交换等)在生理病理过程中起着重要作用。用于这些方面研究的生物核磁共振方法主要包括有:^31PNMR、^19NMR、^7Li NMR及^23Na NMR等。^31P NMR主要用于对细胞内小分子代谢物、pH及游离Mg^2 的分析测定;^19F NMR是利用氟代指示剂间接地测定细胞内游离Mg^2 和Ca^2 的浓度,进而对钙镁离子通道进行分析研究;^7Li NMR、^23Na NMR等方法分别用于研究Li^ 、Na^ /Li^ 交换、Mg^2 /Li^ 交换、Na^ 及K^ 等。为了更好地理解和阐释细胞内离子的调控机制,本文对近几年核磁共振技术在这些方面的应用进行了综述。  相似文献   

6.
Fura-2探针对希土Y3+跨PC12细胞膜行为研究   总被引:4,自引:0,他引:4  
使用AR-MIC-CM阳离子测定系统,发展Fura-2荧光测定技术,将其应用于测定细胞内游离希土离子Y3+,并以此研究了Y3+跨PC12细胞(大鼠嗜铬细胞瘤细胞)膜的行为。结果表明:在模拟细胞内各离子组分,pH=7.05的溶液中,测得表观解离常数为4.5p mol·L-1。对于PC12细胞,静息条件下Y3+不能跨越细胞膜进入胞内。与钙离子通道相关的KCl和去甲肾上腺素均不能刺激希土Y3+过膜。用Ouabain(哇巴因)使胞内Na+超载后,Y3+可过膜进入细胞内,且过膜量与胞外Y3+浓度和胞内Na+超载程度有一定的浓度依赖关系,提示Y3+可以经由Na+/Y3+交换机制过膜而进入细胞内。  相似文献   

7.
利用全细胞膜片钳技术,研究了稀土镧离子对非兴奋性小鼠成骨细胞(MC3T3)钙激活外向钾电流及其激活和失活动力学的影响.结果表明:MC3T3细胞钙激活外向钾电流随着电极内液中游离Ca2+浓度的增加而增加,且具有电压和胞内游离Ca2+依赖性特征.细胞外液中的稀土镧可浓度依赖性地抑制MC3T3细胞钙激活外向钾电流,其半数抑制浓度(EC50)为8.23±1.45μmol/L.50μmol/L氯化镧可使钾电流的激活曲线向正电位方向移动,而使其失活曲线向负电位方向移动,但对激活曲线和失活曲线的斜率因子k值影响都不大.研究表明:抑制钾通道电流,可使细胞膜去极化,细胞的兴奋性增加,从而增加胞外Ca2+向胞内流动,引起胞内Ca2+浓度的增加,由此而诱发一系列的生理和分子生物学事件.这一过程可能是稀土镧影响MC3T3成骨细胞生长和功能的分子作用机制之一.  相似文献   

8.
新型Ca2+探针用于5-HT诱导细胞钙动员的机制   总被引:4,自引:0,他引:4       下载免费PDF全文
采用激光共聚焦技术分别进行了新型Ca2+荧光试剂STDIn与Fluo-3对胃底平滑肌细胞的标记及其对胞内游离Ca2+浓度变化的响应等特性的研究. 结果表明, 与Fluo-3不同, 新型Ca2+荧光试剂STDIn对胞浆Ca2+具有靶向性, 是一种真正的胞浆Ca2+荧光探针, 对5-羟色胺(5-HT)诱导的胞内游离Ca2+浓度变化的响应更灵敏迅速. 应用STDIn对5-HT诱导胃底平滑肌细胞内游离Ca2+动员的机制研究发现, L型钙通道拮抗剂Mn9202对5-HT升高[Ca2+ ]i有明显的抑制作用; 使用蛋白激酶(protein kinase C, PKC)抑制剂D-Sphingosine孵育后, 再加入5-HT胞内荧光强度明显升高, 而以磷脂酶(phospholipase C, PLC)抑制剂Compound48/80孵育后, 5-HT则不再引起荧光强度的变化. 表明5-HT通过促进外钙内流和内钙释放使[Ca2+ ]i升高; 在胃底平滑肌5-HT升高[Ca2+]i是通过5-HT2受体介导的IP3/Ca2+和DG/PKC双信使途径; 5-HT通过L型钙通道促进外钙内流; Mn9202亦能通过拮抗5-HT受体而起到抑制5-HT促胞内钙释放的作用.  相似文献   

9.
天然沸石粉阳离子吸附性能分析方法的探讨   总被引:1,自引:0,他引:1  
通过比较不同浓度的NH4Ac溶液对天然沸石粉所吸附的碱金属和碱土金属离子多次连续提取的效果,将由交换性K^ 、Na^ 、Ca^2 和Mg^2 加和所获得的阳离子交换量与由常规土壤阳离子交换量测定法获得的阳离子交换量进行比较,发现常规的土壤分析方法不适于测定天然沸石粉所吸附的交换性K^ 、Na^ 、Ca^2 和Mg^2 及阳离子交换量。建议用K^ 、Na^ 、Ca^2 和Mg^2 5次提取总量分别作为天然沸石粉所吸附的交换性K^ 、Na^ 、Ca^2 和Mg^2 的估算值,并把其提取量加和作为沸石粉阳离子交换量的估算值.  相似文献   

10.
卢靖  黄剑锋 《无机化学学报》2010,26(8):1349-1354
采用原子吸收光谱法检测体外人红细胞摄取Cs+的含量,系统讨论了胞外Cs+浓度,温育时间、温育温度、介质pH值对人红细胞摄取Cs+过程的影响。选用不同离子通道或离子载体的特异性抑制剂进一步探讨Cs+的跨膜途径和机理。结果显示,各实验参数对人红细胞摄取Cs+均有一定的促进作用。Cs+主要借助Na+/K+-泵的主动运输方式跨膜;少量的Cs+能"漏入"细胞,微量的Cs+可以模拟Na+/Li+-反向协同运输的方式跨膜;在允许HCO3-存在的pH环境下,少量Cs+以Cl-/CsCO3-交换的形式通过膜上带3蛋白进入人红细胞;Ca2+通道对Cs+没有通透作用。  相似文献   

11.
Results from a systematic experiment on isolated perfused rat heart and isolated myc-cytes of adult rat showed that the mechanism of calcium influx during myocardial ischemia-reperfusion is due to the development of intracellular sodium overload during ischemic pe-riod, on reperfusion, the high intracellular Na~+ content activated the reverse direction ofNa~+-Ca~(2+) exchange over myocardial sarcolemma (SL), thus a large quantity of extracellularCa~(2+) fluxed over the SL to the intracellular space, forming a condition of intracellular Ca~(2+)overload, which leads to irreversible damage of the myocardium.  相似文献   

12.
Whether La3+ can enter human peripheral blood lymphocytes by the Na+/Ca2+ exchanger or not and the effect of La3+on the Na+/Ca2+ exchanger activity are examined by fura-2 technique. And that whether La3+ is sequestered by intracellular organelles (mainly endoplasmic reticulum and mitochondria) is studied by this method. La3+uptake is obviously stimulated by pre-treating the cells with ouabain and by removing extracellular Na+, and intracellular La3+concentration ([La3+]i) is directly proportional to its extracellular concentration ([La3+]o). But when [La3+]o exceeds 0.4 mmol/L, the 340/380 nm ratio of fluorescence is no longer varied and the maximum [La3+], is 1.5×10-12 mol · L-1. The higher concentration of La3+ (0.1 mmol/L) increases Na+/Ca2+ exchange-mediated calcium influx, but lower concentration (10 μmol/L) appears to block calcium influx. The results also suggest that cytosolic La3+ is transported by the ATP-dependent Ca2+ pump. Intracellular Ca2+ stores are depleted by ionomycin, and then ion  相似文献   

13.
Na+-Ca2+ exchanger (NCX) transports Ca2+ coupled with Na+ across the plasma membrane in a bi-directional mode. Ca2+ flux via NCX mediates osteogenic processes, such as formation of extracellular matrix proteins and bone nodules. However, it is not clearly understood how the NCX regulates cellular Ca2+ movements in osteogenic processes. In this study, the role of NCX in modulating Ca2+ content of intracellular stores ([Ca2+]ER) was investigated by measuring intracellular Ca2+ activity in isolated rat osteoblasts. Removal of extracellular Na+ elicited a transient increase of intracellular Ca2+ concentration ([Ca2+]i). Pretreatment of antisense oligodeoxynucleotide (AS) against NCX depressed this transient Ca2+ rise and raised the basal level of [Ca2+]i. In AS-pretreated cells, the expression and activity of alkaline phosphatase (ALP), an osteogenic marker, were decreased. However, the cell viability was not affected by AS-pretreatment. Suppression of NCX activity by the AS-pretreatment decreased ATP-activated Ca2+ release from intracellular stores and significantly enhanced Ca2+ influx via store operated calcium influx (SOCI), compared to those of S-pretreated or control cells. These results strongly suggest that NCX has a regulatory role in cellular Ca2+ pathways in osteoblasts by modulating intracellular Ca2+ content.  相似文献   

14.
Human red blood cells (RBCs) were loaded with the Ca(2+)-sensitive fluorescent dye fura-2 to investigate the effects of media ionic strength and prostaglandin E2 (PGE2) on the intracellular free Ca2+ concentration ([Ca2+]i). [Ca2+]i of intact RBCs in a Ca(2+)-containing physiological (high) ionic strength (HIS) solution was 75.1 +/- 8.3 nM after 5 min incubation, increasing to 114.9 +/- 9.6 nM after 1 h. In Ca(2+)-containing low ionic strength (LIS) solutions, [Ca2+]i was significantly lower than in the Ca(2+)-containing HIS solution (p = 0.041 or 0.0385 for LIS solutions containing 200 or 250 mM sucrose, respectively), but, as in HIS solution, an increase of [Ca2+]i was seen after 1 h. In Ca(2+)-free (0 Ca2+ plus 15 microM EGTA) media, [Ca2+]i decreased (ranging from 15 to 21 nM), but were not significantly different in HIS or LIS, and did not change following 1 h incubation. The effect of the ionic strength and PGE2 on passive Ca2+ influx was investigated on ATP-depleted RBCs. Ca2+ influx was faster during the initial 10 min in comparison with the subsequent time period (10-45 min), both in HIS and LIS media, decreasing from 20.3 +/- 1.9 to 12.9 +/- 1.3 micromol/(lcells x h) in HIS, and from 36.7 +/- 5.3 to 8.6 +/- 1.2 micromol/(lcells x h) in LIS. Prostaglandin E2 (PGE2; 10(-7)-10(-11) M), dissolved in deionised water or in ethanol, did not affect [Ca2+]i in either normal or in ATP-depleted RBCs suspended in Ca(2+)-containing HIS medium. Finally, the addition of carbachol (100 microM) did not affect [Ca2+]i. The present findings suggest that stimulation of the Ca(2+)-activated K+ channel by PGE2, reported in [J. Biol. Chem. 271 (1996) 18651], cannot be mediated via increased [Ca2+]i.  相似文献   

15.
The effect of Zn2+ on the O2- generation and change in intracellular Ca2+ concentration ([Ca2+]i) of rat peritoneal neutrophils was studied. Zymosan (serum-treated zymosan (STZ))-induced O2- generation was inhibited by Zn2+ at concentrations as low as 10 microM. A large amount of the inhibition was observed in the absence of extracellular Ca2+ but the inhibition could not be restored by increasing the extracellular Ca2+ concentration, indicating that Zn2+ does not necessarily inhibit the O2- generation competitively with extracellular Ca2+. In the absence of extracellular Ca2+, Zn2+ inhibited STZ-induced transient increase in [Ca2+]i in the concentration range that evoked a marked inhibition in the O2- generation. On the other hand, Zn2+ did not inhibit significantly STZ-induced uptake of 45Ca2+ from extracellular medium by the cells. From these results, it is suggested that Zn2+ inhibits STZ-induced release of Ca2+ from intracellular storage sites, resulting in the suppression of the activation mechanism of neutrophils.  相似文献   

16.
Results from a systematic experiment on isolated perfused rat heart and isolated myocytes of adult rat showed that the mechanism of calcium influx during myocardial ischemia-reperfusion is due to the development of intracellular sodium overload during ischemic period; on reperfusion, the high intracellular Na+ content activated the reverse direction of Na(+)-Ca2+ exchange over myocardial sarcolemma (SL), thus a large quantity of extracellular Ca2+ fluxed over the SL to the intracellular space, forming a condition of intracellular Ca2+ overload, which leads to irreversible damage of the myocardium.  相似文献   

17.
Doxorubicin (DOX) is one of the most potent anticancer drugs and induces acute cardiac arrhythmias and chronic cumulative cardiomyopathy. Though DOX-induced cardiotoxicity is known to be caused mainly by ROS generation, a disturbance of Ca2+ homeostasis is also implicated one of the cardiotoxic mechanisms. In this study, a molecular basis of DOX-induced modulation of intracellular Ca2+ concentration ([Ca2+]i) was investigated. Treatment of adult rat cardiomyocytes with DOX increased [Ca2+]i irrespectively of extracellular Ca2+, indicating DOX-mediated Ca2+ release from intracellular Ca2+ stores. The DOX-induced Ca2+ increase was slowly processed and sustained. The Ca2+ increase was inhibited by pretreatment with a sarcoplasmic reticulum (SR) Ca2+ channel blocker, ryanodine or dantrolene, and an antioxidant, alpha-lipoic acid or alpha-tocopherol. DOX-induced ROS generation was observed immediately after DOX treatment and increased in a time-dependent manner. The ROS production was significantly reduced by the pretreatment of the SR Ca2+ channel blockers and the antioxidants. Moreover, DOX-mediated activation of caspase-3 was significantly inhibited by the Ca2+ channel blockers and a-lipoic acid but not a-tocopherol. In addition, cotreatment of ryanodine with alpha-lipoic acid resulted in further inhibition of the casapse-3 activity. These results demonstrate that DOX-mediated ROS opens ryanodine receptor, resulting in an increase in [Ca2+]i and that the increased [Ca2+]i induces ROS production. These observations also suggest that DOX/ROS-induced increase of [Ca2+]i plays a critical role in damage of cardiomyocytes.  相似文献   

18.
A new fluorescent Ca2+ indicator STDIn-AM for detecting [Ca2+]i transients in cultured smooth muscle cells is presented. By making a comparison, the difference between STDIn and fluo-3 is discussed in detail. Using the new Ca2+ indicator, the mechanism of 5-hydroxytryptamino (5-HT) induced intracellular calcium dynamics in stomach fundus smooth muscle cells (SFSMC) of rats is investigated. It is shown that in contrast with fluo-3, STDIn is uniformly distributed in the cytosolic compartment but excluded from the nucleus, when it is transfected into cells. This feature makes it a real cytosol Ca2+ indicator and can reflect changes of cytosol [Ca2+] more accurately than that of fluo-3. In addition, STDIn responds to the [Ca2+]i transients more sensitive and faster than fluo-3. The results also show that, the L-type Ca2+channel inhibitor Mn9202 and the PLC inhibitor Compound 48/80 can significantly inhibit the [Ca2+]i elevation induced by 5-HT, while the PKC inhibitor D-Sphingosine can enhance the effect of  相似文献   

19.
Many studies on intracellular calcium ([Ca2+](i)) and intracellular pH (pH(i)) have been carried out due to their importance in regulation of different cellular functions. However, most of the previous studies are focused on human or mammalian cells. The purpose of the present study was to characterize the effect of Rhodojaponin-III (R-III) on [Ca2+](i) and pH(i) and the proliferation of Sf9 cells. R-III strongly inhibited Sf9 cells proliferation with a time- and dose-dependent manner. Flow cytometry established that R-III interfered with Sf9 cells division and arrested them in G2/M. By using confocal scanning technique, effects of R-III on intracellular free calcium ([Ca2+](i)) and intracellular pH (pH(i)) in Sf9 cells were determined. R-III induced a significant dose-dependent (1, 10, 100, 200 μg/mL) increase in [Ca2+](i) and pH(i) of Sf9 cells in presence of Ca2+-containing solution (Hanks) and an irreversible decrease in the absence of extra cellular Ca2+. We also found that both extra cellular Ca2+ and intracellular Ca2+ stores contributed to the increase of [Ca2+](i), because completely treating Sf9 cells with CdCl(2) (5 mM), a Ca2+ channels blocker, R-III (100 μg/mL) induced a transient elevation of [Ca2+](i) in case of cells either in presence of Ca2+ containing or Ca2+ free solution. In these conditions, pH(i) showed similar changes with that of [Ca2+](i) on the whole. Accordingly, we supposed that there was a certain linkage for change of [Ca2+](i), cell cycle arrest, proliferation inhibition in Sf9 cells induced by R-III.  相似文献   

20.
The role of acrylamide on the human peripheral lymphocytes was studied by laser scanning confocal microscopy technique and fluo-3. The calibration value of the apparent dissociation constant (Kd) of the fluo-3-Ca^2+ complex was obtained as 4.83 × 10^-7 moi/L. Acrylamide (〈54 μg/mL) evoked a rise in free intracellular calcium concentration [Ca^2+]i, in a dosedependent manner. Acrylamide induced the increase of [Ca^2+]i was discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号