首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ternary copper(II) complexes [Cu(l-met)B(Solv)](ClO4) (1-4), where B is a N,N-donor heterocyclic base like 2,2'-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 3) and dipyrido[3,2-a:2'],3'-c]phenazene (dppz, 4), are prepared and their DNA binding and photo-induced DNA cleavage activity studied (L-Hmet =L-methionine). Complex 2, structurally characterized by X-ray crystallography, shows a square pyramidal (4 + 1) coordination geometry in which the N,O-donor L-methionine and N,N-donor heterocyclic base bind at the basal plane and a solvent molecule is coordinated at the axial site. The complexes display a d-d band at approximately 600 nm in DMF and exhibit a cyclic voltammetric response due to the Cu(II)/Cu(I) couple near -0.1 V in DMF-Tris-HCl buffer. The complexes display significant binding propensity to the calf thymus DNA in the order: 4(dppz) > 3(dpq) > 2(phen> 1(bpy). Control cleavage experiments using pUC19 supercoiled DNA and distamycin suggest major groove binding for the dppz and minor groove binding for the other complexes. Complexes 2-4 show efficient DNA cleavage activity on UV (365 nm) or red light (632.8 nm) irradiation via a mechanistic pathway involving formation of singlet oxygen as the reactive species. The DNA cleavage activity of the dpq complex is found to be significantly more than its dppz and phen analogues.  相似文献   

2.

Background  

Mycobacterium tuberculosis DNA topoisomerase I is an attractive target for discovery of novel TB drugs that act by enhancing the accumulation of the topoisomerase-DNA cleavage product. It shares a common transesterification domain with other type IA DNA topoisomerases. There is, however, no homology between the C-terminal DNA binding domains of Escherichia coli and M. tuberculosis DNA topoisomerase I proteins.  相似文献   

3.
Dipyridoquinoxaline (dpq) complexes of bivalent 3d-metal ions, viz., [FeII(dpq)3](PF6)2 (1), [CoII(dpq)3](ClO4)2 (2), [NiII(dpq)3](ClO4)2 (3), [CuII(dpq)2(H2O)](ClO4)2 (4), [ZnII(dpq)3](ClO4)2 (5), and [ZnII(dpq)2(DMF)2](ClO4)2 (5a) (DMF = N,N-dimethylformamide), are prepared and their photoinduced DNA cleavage activity studied. Structural characterization for the complexes 1 and 5a is done by single-crystal X-ray crystallography. All the complexes show efficient binding propensity to calf thymus DNA with a binding constant (K) value of approximately 10(5) M(-1). Complexes 1, 2, and 4 show metal-based cyclic voltammetric responses at 1.2, 0.4, and 0.09 V (vs SCE) in DMF 0.1 M [Bun4N](ClO4) assignable to the respective FeIII/FeII, CoIII/CoII, and CuII/CuI couples. The NiII and ZnII complexes do not show any metal-based redox process. The dpq-based reductions are observed in the potential range of -1.0 to -1.7 V vs SCE. DNA melting and viscosity data indicate the groove-binding nature of the complexes. Control experiments using distamycin-A suggest a minor groove-binding propensity of the complexes. The complexes exhibit photoinduced cleavage of supercoiled pUC19 DNA in UV light of 365 nm. The diamagnetic d6-FeII and d10-ZnII complexes are cleavage-inactive on irradiation with visible light. The paramagnetic d7-CoII and d9-CuII complexes exhibit efficient DNA cleavage activity on photoirradiation at their respective d-d band. The paramagnetic d8-NiII complex displays only minor DNA cleavage activity on irradiation at its d-d band. The DNA cleavage reactions at visible light under aerobic conditions involve the formation of hydroxyl radical. The CoII complex shows photocleavage of DNA under an argon atmosphere. Theoretical calculations on the complexes suggest a photoredox pathway in preference to a type-2 process forming singlet oxygen for the visible-light-induced DNA cleavage activity of the 3d-metal complexes. The theoretical data also predict that the photoredox pathway is favorable for the 3d7-CoII and 3d9-CuII complexes to exhibit DNA cleavage activity, while the analogous 3d6-FeII and 3d8-NiII complexes are energetically unfavorable for the exhibition of such activity under visible light. The CoII and CuII complexes are better suited for designing and developing new metal-based PDT agents than their cleavage-inactive FeII, NiII, and ZnII analogues.  相似文献   

4.
Ternary copper(II) complexes [Cu(l-lys)B(ClO4)](ClO4)(1-4), where B is a heterocyclic base, viz. 2,2'-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 3) and dipyrido[3,2-a:2',3'-c]phenazene (dppz, 4), are prepared and their DNA binding and photo-induced DNA cleavage activity studied (l-lys =l-lysine). Complex 2, structurally characterized by X-ray crystallography, shows a square-pyramidal (4 + 1) coordination geometry in which the N,O-donor l-lysine and N,N-donor heterocyclic base bind at the basal plane and the perchlorate ligand is bonded at the elongated axial site. The crystal structure shows the presence of a pendant cationic amine moiety -(CH2)4NH3+ of l-lysine. The one-electron paramagnetic complexes display a d-d band in the range of 598-762 nm in DMF and exhibit cyclic voltammetric response due to Cu(II)/Cu(I) couple in the range of 0.07 to -0.20 V vs. SCE in DMF-Tris-HCl buffer. The complexes having phenanthroline bases display good binding propensity to the calf thymus DNA giving an order: 4 (dppz) > 3 (dpq) > 2 (phen)> 1 (bpy). Control cleavage experiments using pUC19 supercoiled DNA and distamycin suggest major groove binding for the dppz and minor groove binding for the other complexes. Complexes 2-4 show efficient DNA cleavage activity on UV (365 nm) or visible light (694 nm ruby laser) irradiation via a mechanistic pathway involving formation of singlet oxygen as the reactive species. The amino acid l-lysine bound to the metal shows photosensitizing effect at red light, while the heterocyclic bases are primarily DNA groove binders. The dpq and dppz ligands display red light-induced photosensitizing effects in copper-bound form.  相似文献   

5.
Quantitative footprinting studies involving a 139-base pair restriction fragment from pBR322 DNA, a lexitropsin ligand and two different DNA cleavage agents, the enzyme DNase I and the footprinting reagent Fe(III) methidium-propyl-EDTA (Fe-MPE), are described. The autoradiographic data showed that the ligand, an analogue of netropsin possessing two N-methylimidazole groups, binds to four regions on the 139-mer which are rich in GC. Analysis of the data leading to individual binding constants for each of the four loading events on the 139-mer revealed that Fe-MPE and DNase I report the same binding constants for the lexitropsin bound to its interaction sequences. The fact that the data from both probes can be analyzed using a common model indicates that the DNA cleavage specificity of the probe and not its binding/cleavage mechanism is the important factor in reporting of site loading information in the footprinting experiment. The study also showed that under certain conditions it is possible to gain information on the density of ligand binding sites on carrier DNA by monitoring site loading events on the labeled fragment.  相似文献   

6.
The first complete, systematic study of DNA degradation by bleomycin under conditions analogous to those likely in a therapeutic setting has been carried out. Hairpin DNAs selected for their ability to bind strongly to BLM A(5) were used to determine the relationship between high-affinity DNA binding sites and the cleavage efficiency and selectivity of BLM A(5) and deglycoBLM A(5) on these DNAs. Of the 10 hairpin DNAs examined, 8 contained at least one 5'-GC-3' or 5'-GT-3' cleavage site, which have traditionally been associated with strong cleavage by Fe·BLM. In the hairpin DNAs, these included the strongest cleavage sites for BLM A(5) and were generally among those for deglycoBLM A(5). However, numerous additional cleavages were noted, many at sequences not usually associated with (deglyco)BLM-mediated cleavage. The remaining DNAs lacked the preferred (5'-GC-3' or 5'-GT-3') BLM cleavage sequences; however, strong cleavage was nonetheless observed at a number of unusual cleavage sites. The most prominent cleavage sequences were 5'-AT-3', 5'-AA-3', 5'-GA-3', and 5'-TT-3'; treatment with Fe(II)·BLM A(5) or Fe(II)·deglycoBLM A(5) resulted in strong cleavage at these sequences. Additionally, in contrast with BLM A(5), which produced cleavage within the randomized and flanking invariant regions, deglycoBLM A(5) showed a preference for cleavage in the randomized region of the DNAs. Previous reports have established that deglycoBLM exhibits decreased DNA cleavage efficiency relative to BLM. This was also generally observed when comparing cleavage efficiencies for the strongly bound hairpin DNAs. However, some cleavage bands produced by Fe·deglycoBLM A(5) were stronger in intensity than those produced by BLM A(5) at concentrations optimal for both compounds. To investigate the chemistry of DNA degradation, selected hairpin DNAs were treated with n-butylamine following cleavage with Fe(II)·BLM A(5) or Fe(II)·deglycoBLM A(5) to explore the alkali labile pathway of DNA degradation by BLM. While all 10 DNAs showed evidence of alkali labile products, five DNA hairpins afforded some products formed solely via the alkali labile pathway.  相似文献   

7.
The bleomycin (BLM) group of antitumor antibiotics effects DNA cleavage in a sequence-selective manner. Previous studies have indicated that the metal-binding and bithiazole moieties of BLM are both involved in the binding of BLM to DNA. The metal-binding domain is normally the predominant structural element in determining the sequence selectivity of DNA binding, but it has been shown that replacement of the bithiazole moiety with a strong DNA binder can alter the sequence selectivity of DNA binding and cleavage. To further explore the mechanism by which BLM and DNA interact, a trithiazole-containing deglycoBLM analogue was synthesized and tested for its ability to relax supercoiled DNA and cleave linear duplex DNA in a sequence-selective fashion. Also studied was cleavage of a novel RNA substrate. Solid-phase synthesis of the trithiazole deglycoBLM A(5) analogue was achieved using a TentaGel resin containing a Dde linker and elaborated from five key intermediates. The ability of the resulting BLM analogue to relax supercoiled DNA was largely unaffected by introduction of the additional thiazole moiety. Remarkably, while no new sites of DNA cleavage were observed for this analogue, there was a strong preference for cleavage at two 5'-GT-3' sites when a 5'-(32)P end-labeled DNA duplex was used as a substrate. The alteration of sequence selectivity of cleavage was accompanied by some decrease in the potency of DNA cleavage, albeit without a dramatic diminution. In common with BLM, the trithiazole analogue of deglycoBLM A(5) effected both hydrolytic cleavage of RNA in the absence of added metal ion and oxidative cleavage in the presence of Fe(2+) and O(2). In comparison with BLM A(5), the relative efficiencies of hydrolytic cleavage at individual sites were altered.  相似文献   

8.

Background  

Escherichia coli DNA topoisomerase I binds three Zn(II) with three tetracysteine motifs which, together with the 14 kDa C-terminal region, form a 30 kDa DNA binding domain (ZD domain). The 67 kDa N-terminal domain (Top67) has the active site tyrosine for DNA cleavage but cannot relax negatively supercoiled DNA. We analyzed the role of the ZD domain in the enzyme mechanism.  相似文献   

9.
The complexes [Cu(phen)(3)](ClO(4))(2) 1, [Cu(5,6-dmp)(3)](ClO(4))(2) 2, [Cu(dpq)(3)](ClO(4))(2) 3, [Zn(phen)(3)](ClO(4))(2) 4, [Zn(5,6-dmp)(3)](ClO(4))(2) 5 and [Zn(dpq)(3)](ClO(4))(2) 6, where phen = 1,10-phenanthroline, 5,6-dmp = 5,6-dimethyl-1,10-phenanthroline and dpq = dipyrido[3,2-d:2',3'-f]quinoxaline, have been isolated, characterized and their interaction with calf thymus DNA studied by using a host of physical methods. The X-ray crystal structures of rac-[Cu(5,6-dmp)(3)](ClO(4))(2) and rac-[Zn(5,6-dmp)(3)](ClO(4))(2) have been determined. While 2 possesses a regular elongated octahedral coordination geometry (REO), 5 possesses a distorted octahedral geometry. Absorption spectral titrations of the Cu(II) complexes with CT DNA reveal that the red-shift (12 nm) and DNA binding affinity of 3 (K(b), 7.5 x 10(4) M(-1)) are higher than those of 1 (red-shift, 6 nm; K(b), 9.6 x 10(3) M(-1)) indicating that the partial insertion of the extended phen ring of dpq ligand in between the DNA base pairs is deeper than that of phen ring. Also, 2 with a fluxional Cu(II) geometry interacts with DNA (K(b), 3.8 x 10(4) M(-1)) more strongly than 1 suggesting that the hydrophobic forces of interaction of 5,6 methyl groups on the phen ring is more pronounced than the partial intercalation of phen ring in the latter with a static geometry. The DNA binding affinity of 1 is lower than that of its Zn(ii) analogue 4, and, interestingly, the DNA binding affinity 2 of with a fluxional geometry is higher than that of its Zn(II) analogue 5 with a spherical geometry. It is remarkable that upon binding to DNA 3 shows an increase in viscosity higher than that the intercalator EthBr does, which is consistent with the above DNA binding affinities. The CD spectra show only one induced CD band on the characteristic positive band of CT DNA upon interaction with the phen (1,4) and dpq (3,6) complexes. In contrast, the 5,6-dmp complexes 2 and 5 bound to CT DNA show exciton-coupled biphasic CD signals with 2 showing CD signals more intense than 5. The Delta-enantiomer of rac-[Cu(5,6-dmp)(3)](2+) 2 binds specifically to the right-handed B-form of CT DNA at lower ionic strength (0.05 M NaCl) while the Lambda-enantiomer binds specifically to the left-handed Z-form of CT DNA generated by treating the B-form with 5 M NaCl. The complex 2 is stabilized in the higher oxidation state of Cu(II) more than its phen analogue 1 upon binding to DNA suggesting the involvement of electrostatic forces in DNA interaction of the former. In contrast, 3 bound to DNA is stabilized as Cu(I) rather than the Cu(II) oxidation state due to partial intercalative interaction of the dpq ligand. The efficiencies of the complexes to oxidatively cleave pUC19 DNA vary in the order, 3> 1 > 2 with 3 effecting 100% cleavage even at 10 microM complex concentration. However, interestingly, this order is reversed when the DNA cleavage is performed using H(2)O(2) as an activator and the highest cleavage efficiency of 2 is ascribed to its electrostatic interaction with the exterior phosphates of DNA.  相似文献   

10.
Ternary copper(II) complexes [Cu(L1)B](ClO4) (1, 2) and [Cu(L2)B](ClO4) (3, 4), where HL1 and HL2 are tridentate NSO- and ONO-donor Schiff bases and B is a heterocyclic base, viz. dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 1 and 3) or dipyrido[3,2-a:2',3'-c]phenazine (dppz, 2 and 4), were prepared and their DNA binding and photoinduced DNA cleavage activity studied. Complex 1, structurally characterized by single-crystal X-ray crystallography, shows an axially elongated square-pyramidal (4 + 1) coordination geometry in which the monoanionic L1 binds at the equatorial plane. The NN-donor dpq ligand exhibits an axial-equatorial binding mode. The complexes display good binding propensity to calf thymus DNA, giving a relative order 2 (NSO-dppz) > 4 (ONO-dppz) > 1 (NSO-dpq) > 3 (ONO-dpq). They cleave supercoiled pUC19 DNA to its nicked circular form when treated with 3-mercaptopropionic acid (MPA) by formation of hydroxyl radicals as the cleavage active species under dark reaction conditions. The photoinduced DNA cleavage activity of the complexes was investigated using UV radiation of 365 nm and red light of 633, 647.1, and 676.4 nm (CW He-Ne and Ar-Kr mixed gas ion laser sources) in the absence of MPA. Complexes 1 and 2, having photoactive NSO-donor Schiff base and dpq/dppz ligands, show dual photosensitizing effects involving both the photoactive ligands in the ternary structure with significantly better cleavage properties when compared to those of 3 and 4, having only photoactive dpq/dppz ligands. Involvement of singlet oxygen in the light-induced DNA cleavage reactions is proposed. A significant enhancement of the red-light-induced DNA cleavage activity is observed for the dpq and dppz complexes containing the sulfur ligand when compared to their earlier reported phen (1,10-phenanthroline) analogue. Enhancement of the cleavage activity on photoexposure at the d-d band indicates the occurrence of metal-assisted photosensitization processes involving the LMCT and d-d band in the ternary structure.  相似文献   

11.
Oxovanadium(IV) complexes [VO(salmet)(B)] (1-3) and [VO(saltrp)(B)] (4-6), where salmet and saltrp are N-salicylidene-l-methionate and N-salicylidene-l-tryptophanate, respectively, and B is a N,N-donor heterocyclic base (viz. 1,10-phenanthroline (phen, 1, 4), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 2, 5), and dipyrido[3,2-a:2',3'-c]phenazine (dppz, 3, 6)) are prepared and characterized and their DNA binding and photoinduced DNA cleavage activity studied. Complexes 1, 2, and 4 are structurally characterized by single-crystal X-ray crystallography. The molecular structure shows the presence of a vanadyl group in the VO3N3 coordination geometry. The dianionic alpha-amino acid Schiff base acts as a tridentate O,N,O-donor ligand in a meridional binding mode. The N,N-donor heterocyclic base displays a chelating mode of bonding with a N-donor site trans to the oxo group. The complexes show a d-d band in the range of 680-710 nm in DMF with a shoulder near 840 nm. They exhibit an irreversible oxidative cyclic voltammetric response near 0.8 V assignable to the V(V)/V(IV) couple and a quasi-reversible V(IV)/V(III) redox couple near -1.1 V vs SCE in DMF-0.1 M TBAP. The complexes show good binding propensity to calf thymus DNA giving binding constant values in the range from 5.2 x 10(4) to 7.2 x 10(5) M(-1). The binding site size, thermal melting, and viscosity data suggest DNA surface and/or groove binding nature of the complexes. The complexes show poor "chemical nuclease" activity in the dark in the presence of 3-mercaptopropionic acid or hydrogen peroxide. The dpq and dppz complexes show efficient DNA cleavage activity on irradiation with UV-A light of 365 nm via a mechanistic pathway involving formation of singlet oxygen as the reactive species. They also show significant DNA cleavage activity on photoexcitation in red light (>750 nm) by (1)O2 species. Observation of red-light-induced cleavage of DNA is unprecedented in the vanadium chemistry. The DNA cleavage activity is metal promoted as the ligands or vanadyl sulfate alone are cleavage inactive on photoirradiation at these wavelengths.  相似文献   

12.
A set of copper(II) complexes of glycine and methylated glycine derivatives, Cu(aa)2, consisting of C-dimethylglycine, l-alanine, N-dimethylglycine and sarcosine, was investigated for their DNA binding and nucleolytic properties by means of EPR and visible spectroscopy, and electrophoresis. They bind weakly to DNA with apparent binding constants in the range 1.8–2.9 × 103 M−1 with very similar orientation. No DNA cleavage is observed in the absence of exogenous agents. Copper(II) complexes of N-methylated derivatives bind to DNA more stereo-specifically and less strongly, and their oxidative DNA cleavage is less efficient than those of the corresponding C-methylated derivatives in the presence of hydrogen peroxide (H2O2) alone, or sodium ascorbate (NaHA) alone or tandem H2O2–NaHA. The oxidative DNA cleavage mechanism in the three systems involves a common copper(I) species. Neocuproine can inhibit DNA cleavage by these complexes.  相似文献   

13.
The bleomycins (BLMs) are clinically used antitumor antibiotics. Their mechanism of action is believed to involve oxidative cleavage of DNA and possibly also RNA degradation. DNA degradation has been studied extensively and shown to involve binding of an activated metallobleomycin to DNA, followed by abstraction of C4'-H from deoxyribose in the rate-limiting step for DNA degradation. It is interesting that while DNA and RNA degradation by activated Fe.BLM has been studied extensively, much less is known about the actual binding selectivity of BLM, that is, the obligatory step that precedes cleavage. Thus it is unclear whether cleavage specificity is defined by the binding event or whether cleavage occurs at a subset of preferred binding sites. With only a few exceptions, NMR binding studies have employed metalloBLMs such as Co.BLM and Zn.BLM whose therapeutic relevance is uncertain. A single biochemical study that compared DNA binding and cleavage directly also employed Co.BLM. It is logical to anticipate that preferred sites of DNA cleavage will occur at sites that are (a subset of) preferred DNA binding sites, but there are currently no data available relevant to this issue. Herein, we describe the development and implementation of a novel strategy to identify DNA motifs that bind BLM strongly.  相似文献   

14.
Camptothecin (CPT), a cytotoxic natural alkaloid isolated from Camptotheca acuminata, and its derivatives represent an important class of cancer chemotherapeutic drugs that act by inhibiting topoisomerase I (top1). The mechanism of top1 inhibition by CPT has been determined by X-ray crystallography. Biochemical studies carried out both in vitro and in vivo indicated that CPT has strict DNA sequence preference for -1 T and strong preference for +1 G at the cleavage site. To understand the molecular determinants for the CPT binding orientation and DNA sequence selectivity, we present a quantum mechanics calculation where only pi-pi stacking interactions were included to shed some light on the mechanism of this sequence selectivity. This ab initio calculation can not only reproduce the experimental binding orientation of CPT at the cleavage site but also shows very good correlation between the binding energy for different sequences and the observed frequency of CPT-stabilized sites in the SV40 viral genome. Therefore, it can be concluded that hydrogen bonding of the ligand to the surrounding amino acid residues of the protein is of minor significance. The present method should be applicable to other polycyclic top1 inhibitors.  相似文献   

15.
The copper(II) complex [Cu(dppz)(2)Cl]Cl () has been prepared, structurally characterized and its DNA binding and cleavage properties studied (dppz, dipyridophenazine). Crystal structure of 1xdppzxH(2)O shows the presence of the monocationic copper(II) complex containing two dppz ligands and one chloride in the five coordinate structure. While one bidentate chelating dppz ligand occupies the basal plane, the other dppz ligand shows an axial/equatorial mode of bonding. The chloride ligand binds at the basal plane. The complex crystallizes with dppz and water as lattice molecules. The dppz moieties in the metal-bound and free forms are involved in pi-pi stacking interactions. The one-electron paramagnetic complex shows a visible spectral d-d band at 707 nm in DMF and displays quasireversible cyclic voltammetric response for the Cu(II)/Cu(I) couple near 0.1 V vs. SCE in DMF-0.1 M TBAP. The complex which is an avid binder to calf thymus DNA giving a binding constant (K(b)) value of 2.0 x 10(4) M(-1) in DMF-Tris buffer, cleaves supercoiled pUC19 DNA in an oxidative manner in the presence of mercaptopropionic acid (MPA) as a reducing agent or on photo irradiation at 312 nm. Control experiments show major groove binding and DNA cleavage via the formation of hydroxyl radical in the presence of MPA and by singlet oxygen in the photocleavage reaction. The complex exhibits significant hydrolytic cleavage of DNA in the dark in the absence of any additives at a rate of approximately 3.0 h(-1). The hydrolytic nature of the DNA cleavage is evidenced from the T4 ligase experiments converting the nicked circular form to its original supercoiled form quantitatively. Complex presents a rare example of copper-based major groove directing efficient synthetic hydrolase.  相似文献   

16.
The copper(II) complex [Cu(L)(dppz)](ClO4)2 (1) having a tripodal ligand ferrocenylmethylbis(2-pyridylmethylamine) (L) with a pendant ferrocenyl unit and a planar NN-donor dipyrido-[3,2-a:2′,3′-c]-phenazine (dppz) base is prepared and its DNA binding and cleavage properties studied. The complex is redox active showing cyclic voltammetric responses at 0.52 and –0.01 V vs. SCE due to Fe(III)/Fe(II) and Cu(II)/Cu(I) couples, respectively. The complex that binds to the major groove of DNA shows dual chemical nuclease activity involving both the metal centres. The complex displays efficient photo-induced DNA cleavage activity in visible laser light of 458 and 568 nm wavelengths forming cleavage active hydroxyl radicals. Significant DNA cleavage is also observed in red light of 647 nm within the photodynamic therapy (PDT) window.  相似文献   

17.
A new class of ternary copper(II) complexes of formulation [Cu(L(n)B](ClO(4)) (1-4), where HL(n) is a NSO-donor Schiff base (HL(1), HL(2)) and B is a NN-donor heterocyclic base viz. 1,10-phenanthroline (phen) and 2,9-dimethyl-1,10-phenanthroline (dmp), are prepared, structurally characterized, and their DNA binding and photocleavage activities studied in the presence of red light. Ternary complex [Cu(L(3))(phen)](ClO(4)) (5) containing an ONO-donor Schiff base and a binary complex [Cu(L(2))(2)] (6) are also prepared and structurally characterized for mechanistic investigations of the DNA cleavage reactions. While 1-4 have a square pyramidal (4 + 1) CuN(3)OS coordination geometry with the Schiff base bonded at the equatorial sites, 5 has a square pyramidal (4 + 1) geometry with CuN(3)O(2) coordination with the alcoholic oxygen at the axial site, and 6 has a square planar trans-CuN(2)O(2) geometry. Binding of the complexes 1-4 to calf thymus DNA shows the relative order: phen > dmp. Mechanistic investigations using distamycin reveal minor groove binding for the complexes. The phen complexes containing the Schiff base with a thiomethyl or thiophenyl moiety show red light induced photocleavage. The dmp complexes are essentially photonuclease inactive. Complexes 5 and 6 are cleavage inactive under similar photolytic conditions. A 10 microM solution of 1 displays a 72% cleavage of SC DNA (0.5 microg) on an exposure of 30 min using a 603 nm Nd:YAG pulsed laser (60 mJ/P) in Tris-HCl buffer (pH 7.2). Significant cleavage of 1 is also observed at 694 nm using a Ruby laser. Complex 1 is cleavage inactive under argon or nitrogen atmosphere. It shows a more enhanced cleavage in pure oxygen than in air. Enhancement of cleavage in D(2)O and inhibition with sodium azide addition indicate the possibility of the formation of singlet oxygen as a reactive intermediate leading to DNA cleavage. The d-d band excitation with red light shows significant enhancement of cleavage yield. The results indicate that the phen ligand is necessary for DNA binding of the complex. Both the sulfur-to-copper charge transfer band and copper d-d band excitations helped the DNA cleavage. While the absorption of a red photon induces a metal d-d transition, excitation at shorter visible wavelengths leads to the sulfur-to-copper charge transfer band excitation at the initial step of photocleavage. The excitation energy is subsequently transferred to ground state oxygen molecules to produce singlet oxygen that cleaves the DNA.  相似文献   

18.
Amino-p-quinacridine compounds (PQs) have been shown to stabilize strongly and specifically triple-helical DNA. Moreover, these derivatives display photoactive properties that make them efficient DNA cleavage agents. We exploited these two properties (triplex-specific binding and photoactivity) to selectively cleave a double-stranded (ds)DNA sequence present in the HIV-1 genome. Cleavage was first carried out on a linearized plasmid (3300 bp) containing the HIV polypurine tract (PPT) that allowed targeting by a triplex-forming oligonucleotide (TFO). PQ(3)(), the most active compound of the series, efficiently cleaved double-stranded DNA in the vicinity of the PPT when this sequence had formed a triplex with a 16-mer TFO. Investigation of the cleavage at the molecular level was addressed on a short DNA fragment (56 bp); the photoinduced cleavage by PQ(3)() occurred only in the presence of the triple helix. Nevertheless, unusual cleavage patterns were observed: damage was observed at guanines located 6-9 bp away from the end of the triple helical site. This cleavage is very efficient (up to 60%), does not require alkaline treatment, and is observed on both strands. A quinacridine-TFO conjugate produced the same cleavage pattern. This observation, along with others, excludes the hypothesis of a triplex-induced allosteric binding site of PQ(3 )()adjacent to the damaged sequence and indicates that PQ(3 )()preferentially binds in the vicinity of the 5'-triplex junction. Irradiation in the presence of TFO-conjugates with acridine (an intercalative agent) and with the tripeptide lys-tryp-lys led to a complete inhibition of the photocleavage reaction. These results are interpreted in terms of competitive binding and of electron-transfer quenching. Together with the findings of simple mechanistic investigations, they led to the conclusion that the photoinduced damage proceeds through a direct electron transfer between the quinacridine and the guanines. This study addresses the chemical mechanism leading to strand breakage and characterizes the particular photosensitivity of the HIV-DNA target sequence which could be an oxidative hot spot for addressed photoinduced strand scission by photosensitizers.  相似文献   

19.
The novel analogues 11 – 16 of bleomycin A6 ( 3 ) were obtained by selective protection of the primary‐amine function of the β‐aminoalaninamide moiety of 3 by means of coordination with CuII ions, condensation with an aliphatic or aromatic acid R′COOH in the presence of dicyclohexylcarbodiimide, and demetalization (Scheme). The antitumor activity against HeLa and BGC‐823 in vitro, binding property with CT‐DNA, and cleavage potency towards pBR322 DNA were also studied (Tables 13). All the compounds 11 – 16 displayed significant antitumor activity, which was enhanced as the hydrophobicity of the C‐terminus substituent R′ increased, but decreased as the DNA‐binding affinity increased. There was a negative relationship between DNA‐cleavage potency and binding affinity to DNA in this series of compounds.  相似文献   

20.
Tu C  Shao Y  Gan N  Xu Q  Guo Z 《Inorganic chemistry》2004,43(15):4761-4766
A novel trinuclear copper(II) complex, Cu3-L (L = N,N,N',N',N' ',N' '-hexakis(2-pyridyl)-1,3,5-tris(aminomethyl)benzene), exhibited efficient oxidative strand scission of plasmid DNA. The solution behavior of the complex has been studied by potentiometric titration, UV spectroscopy, and cyclic voltammetry. The data showed that there are three redox-active copper ions in the complex with three types of bound water. The complex demonstrated a moderate binding ability for DNA. Cu3-L readily cleaves plasmid DNA in the presence of ascorbate to give nicked (form II) and then linear (form III) products, while the cleavage efficiency using H2O2 is less than by ascorbate, suggesting that the cleavage mode of the trinuclear complex is somewhat different from the traditional Fenton-like catalysis. Meanwhile, Cu3-L is far more efficient than its mononuclear analogue Cu-DPA (DPA = 2,2'-dipyridylamine) at the same [Cu2+] concentration, which suggests a possible synergy between the three or at least two Cu(II) centers in Cu3-L that contributes to its relatively high nucleolytic efficiency. Furthermore, the presence of standard radical scavengers does not have clear effect on the cleavage efficiency, suggesting the reactive intermediates leading to DNA cleavage are not freely diffusible radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号