首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The purpose of the work is physicochemical characterization of nimesulide (NI) and meloxicam (ME)–hydroxypropyl-β-cyclodextrin (HP-β-CD) binary systems both in solution and solid states and to improve the pharmaceutical properties of NI and ME via inclusion complexation with HP-β-CD. Binary systems of NI and ME with HP-β-CD have been characterized both in solution and solid state by different physicochemical methods. Three types of drug–HP-β-CD binary systems, namely physical mixtures (PM), kneaded systems (KS) and co evaporated systems (CS) in 1:1 and 1:2 molar ratios (1:1 and 1:2 M) were prepared. Phase solubility and 1H-NMR spectroscopic studies in solution state revealed 1:1 M complexation of NI and ME with HP-β-CD. A partial inclusion of NI with HP-β-CD at both molar ratios of kneaded and co evaporated systems and a true inclusion of ME with HP-β-CD at both molar ratios of co evaporated systems in solid state was confirmed by differential scanning calorimetry (DSC), powder X-ray diffractometry (powder X-RD) and scanning electron microscopy (SEM) studies. Dissolution properties of NI and ME–HP-β-CD binary systems were superior when compared to corresponding pure drugs. The aqueous solubility and dissolution properties of NI and ME can be improved by inclusion complexation with HP-β-CD. Author for correspondence: E-mail: nbnaid2@E-mail.uky.edu  相似文献   

2.
The interaction of Rose Bengal (RB) with hydroxypropyl-α-cyclodextrin (HP-α-CD), hydroxypropyl-β-cyclodextrin (HP-β-CD) and hydroxypropyl-γ-cyclodextrin (HP-γ-CD) has been studied in water and in acetate buffer at pH 4.5 by UV–Vis absorption, fluorescence spectroscopy and Induced Circular Dichroism at 298 K. Evidence of the complex formation between the RB and all HP-CDs have been obtained both in water and in buffer. Binding constants and stoichiometry of RB/HP-CD complexes in water have been determined by applying the modified Benesi-Hildebrand equation to the fluorescence measurements.  相似文献   

3.
Solid formulas obtained between furosemide and two β-cyclodextrin derivatives (HP-β-CD and RAMEB) were prepared by different methods and in various ratios (1:1 and 1:2). The inclusion complex formation between the drug and the β-CDs of 1:1 ratio was evaluated by mean of thermal analysis (DSC, TG and EGD). Supplementary techniques, such as X-ray diffraction, were also applied to interpret the results of the thermal study of physically mixed and kneaded products. Both studies demonstrated the formation of inclusion complexes in all samples except the physical mix samples; formation of true inclusion complexes was then possible only when the components were in melted form. The complexation increased the solubility and the rate of dissolution of the drug. RAMEB was found to be a better complexing agent than HP-β-CD; in both ratios it can be selected as a vehicle in furosemide tablet preparations. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
The objective of this study was to investigate the influence of cyclodextrins on the cutaneous availability of the sunscreen oxybenzone. The interaction between oxybenzone and hydrophilic α-, β- and γ-cyclodextrin derivatives was studied in water by phase-solubility analysis. Among the available cyclodextrins, hydroxypropyl-β-cyclodextrin (HP-β-CD) and especially sulfobutylether-β-cyclodextrin (SBE-β-CD) had the greatest solubilizing activity. Ethanol–water solutions containing oxybenzone free or complexed with HP-β-CD or SBE-β-CD were applied to human skin in Franz diffusion cells and the amount of sunscreen permeated into the different cutaneous compartments was determined by HPLC. As much as 20.5% of the oxybenzone applied dose diffused within the skin tissue after 6 h application. Between 39.4% and 54.9% of the penetrated UV filter was localized in the stratum corneum, with no significant difference between uncomplexed oxybenzone or its complex with HP-β-CD. Conversely, the amount retained in the stratum corneum was markedly decreased (ca. 50%) by complexation with SBE-β-CD. Considerable quantities of oxybenzone accumulated into the viable epidermis (5.7% of the applied dose) and dermis (6.2% of the applied dose) from the preparation containing the free UV filter. The sunscreen penetration to the deeper living layers of the skin was remarkably lower (1.0% and 2.0% of applied dose for epidermis and dermis, respectively) upon application of the sunscreen complexed with SBE-β-CD, whereas HP-β-CD had no effect. In addition, photostability experiments demonstrated that SBE-β-CD complexation did not alter the sunscreen photochemical properties.  相似文献   

5.
Guest–host interactions were examined for neutral diclofenac (Diclo) and Diclofenac sodium (Diclo sodium) with each of the cyclodextrin (CD) derivatives: α-CD, β-CD, γ-CD and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), all in 0.05 M aqueous phosphate buffer solution adjusted to 0.2 M ionic strength with NaCl at 20 °C, and with β-CD at different pHs and temperatures. The pH solubility profiles were measured to obtain the acid–base ionization constants (pK as) for Diclo in the presence and absence of β-CD. Phase solubility diagrams (PSDs) were also measured and analyzed through rigorous procedures to obtain estimates of the complex formation constants for Diclo/CD and Diclo sodium/CD complexation in aqueous solutions. The results indicate that both Diclo and Diclo sodium form soluble 1:1 complexes with α-, β-, and HP-β-CD. In contrast, Diclo forms soluble 1:1 Diclo/γ-CD complexes, while Diclo sodium forms 1:1 and 2:1 Diclo/γ-CD, but the 1:1 complex saturates at 5.8 mM γ-CD with a solubility product constant (pK sp = 5.5). Therefore, though overall complex stabilities were found to follow the decreasing order: γ-CD > HP-β-CD > β-CD > α-CD, some complex precipitation problems may be faced with aqueous formulations of Diclo sodium with γ-CD, where the overall concentration of the latter exceeds 5.8 mM γ-CD. Both 1H-NMR spectroscopic and molecular mechanical modeling (MM+) studies of Diclo/β-CD indicate the possible formation of soluble isomeric 1:1 complexes in water.  相似文献   

6.
Enantioseparation of 6,6′-dibromo-1,1′-binaphthyl-2,2′-diol (DBBD) by cyclodextrin-modified capillary zone electrophoresis (CD-CZE) was studied using the three native α, β, and γ cyclodextrins, the three hydroxypropylated cyclodextrins (2-hydroxypropyl-α, β, and γ), heptakis-2,6-di-O-methyl-β-CD (DM-β-CD), and heptakis-2,3,6-tri-O-methyl-β-cyclodextrin (TM-β-CD). First, the acidity constants of DBBD were determined using capillary electrophoresis, before performing enantioseparation. The influence of the concentrations of the studied cyclodextrins on the enantioseparation was explored and the experimental optimal concentrations were determined and compared to the theoretical optimal concentrations. Moreover, the apparent complexation constants between each studied cyclodextrin and the two DBBD enantiomers were evaluated using a non-linear curve fitting method and three linear plotting methods (x-reciprocal, y-reciprocal and double reciprocal). For TM-β-CD, the order of migration of the enantiomers of DBBD reversed as a function of TM-β-CD concentration. The influence of the nature of methylated cyclodextrin derivatives (methyl-β-CD (M-β-CD) and DM-β-CD) was then studied. Inversion of the order of migration of the enantiomers of DBBD was observed for DM-β-CD, whereas the S enantiomer of DBBD always migrated first for M-β-CD.  相似文献   

7.
The nuclear magnetic resonance (NMR) spectroscopy demonstrated that the inclusion complexes of meso-tetrakis- (p-sulfonatophenyl) porphyrin (TPPS) with β-, Hydroxypropyl-β- and Methyl-β-cyclodextrin (β-, HP-β- and Me-β-CD) are formed, which resulted in the dissociation of TPPS J-aggregates efficiently under certain acidity. There are no significant differences in binding affinities and basic complexation mechanisms between TPPS and β-cyclodextrin (β-CD) or hydroxypropyl-β-cyclodextrin (HP-β-CD), i.e. porphyrin is included through the wide side of the cavity of β-CD or HP-β-CD. Alternatively, porphyrin is included through the narrow side of the Me-β-CD cavity.  相似文献   

8.
The purpose of this study was to explore the utility of hydroxypropyl-β-cyclodextrin (HP-β-CD) systems in forming inclusion complexes with the anti-rheumatic or anti-arthritic drug, etodolac (EDC), in order to overcome the limitation of its poor aqueous solubility. This inclusion system achieved high solubility for the hydrophobic molecule. The physical and chemical properties of each inclusion compound were investigated. Complexes of EDC with HP-β-CD were obtained using the kneading and co-evaporation techniques. Solid state characterization of the products was carried out using Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), powder X-ray diffraction (XRD) and Scanning electron microscopy (SEM). Studies in the solution state were performed using UV-Vis spectrophotometry and 1H-NMR spectroscopy. Phase solubility profiles with HP-β-CD employed was found to be AL type. Stability constants (Kc) from the phase solubility diagrams were calculated indicating the formation of 1:1 inclusion complex. Stability studies in the solid state and in liquid state were performed; the possible degradation by RP-HPLC was monitored. The dissolution studies revealed that EDC dissolution rate was improved by the formation of inclusion complexes.   相似文献   

9.
The objectives of this research were to prepare and characterize inclusion complex of Ezetimibe (EZE) with cyclodextrins (β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (HPβ-CD)) and to study the effect of complexation on the dissolution rate of EZE, a water insoluble drug. Phase solubility curve was classified as A P -type for both cyclodextrins, indicating the 2:1 stoichiometric ratio for β-CD–EZE and HPβ-CD – EZE inclusion complexes. The inclusion complexes in the molar ratio of 2:1 (β-CD–EZE and HPβ-CD–EZE) were prepared by various methods such as kneading, coevaporation and physical mixing. The molecular behaviors of drug in all samples were characterized by fourier-transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD) studies. The results of these studies indicated that complex prepared by kneading and coevaporation methods showed inclusion of the EZE molecule into the cyclodextrins cavities. The highest improvement in in-vitro dissolution profiles was observed in complex prepared with hydroxypropyl-β-cyclodextrin using co-evaporation method. Mean dissolution time and similarity factor indicated significant difference between the release profiles of EZE from complexes and physical mixtures and from pure EZE.  相似文献   

10.
The objective of this study was to learn whether or not the pattern recognition methods, such as agglomerative cluster analysis (CA) and principal component analysis (PCA), can be used as supplementary techniques for identification of salicylamide (SAA) inclusion complexes with β-cyclodextrin (β-CD) and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD). To do this, phase-solubility of SAA in the presence of the cyclodextrins was studied by the Higuchi-Connors method, which showed that the cyclodextrins enhanced the solubility of SAA in water as compared to that of the drug. Next, the solid phase complexes of the drug with β-CD and HP-β-CD were prepared by using the coprecipitation, precipitation-evaporation, and kneading methods. Identification of the inclusion complexes was performed by using thermal analysis, infrared spectroscopy, and wide angle X-ray scattering. Two multivariate statistical methods, CA and PCA, were used as the supplementary techniques for identification of the inclusion complexes. The results of the statistical analysis have shown that CA and PCA are helpful for interpretation of the thermoanalytical and spectral data. Moreover, these methods enabled proper classification of the products in all doubtful cases. They can be used as supplementary techniques to verify the conclusions of the above-mentioned standard methods.   相似文献   

11.
Carbazole-9-carbonyl chloride (C9CC) and 9-carbazolylacetic acid (9CAA) were selected as model fluorescent reagents. The effect of different chemically modified cyclodextrins (CDs) added to the aqueous solutions of these reagents was studied in water and in buffered aqueous solutions at pH 4.5 and 8.8. The CDs employed were 2-hydroxypropyl-β-cyclodextrin (HP-βCD), 2,3-di-O-methyl-β-cyclodextrin (DM-βCD) and 2,3,6-tri-O-methyl-β-cyclodextrin (TM-βCD). The inclusion of these reagents inside the cavities of the CDs was verified and this process can affect the derivatization reaction because CDs can modify the reactivity of the guest molecules. The basic conditions necessary for the derivatization reaction between C9CC and amines lead to the formation of carbazole anion through hydrolysis followed by decarboxylation. In the presence of CDs, the hydrolysis-decarboxylation of carbazole-9-carbonyl chloride is faster than in buffered aqueous homogeneous solutions. The behaviour observed for these reagents in aqueous solutions of CDs was compared to the one observed in basic ethanolic solutions. These changes are particularly noticeable in the case of 2,3-di-O-methyl-β-CD and 2-hydroxypropyl-β-CD. The characteristics of the fluorescent reagents are compared to carbazole and 9-methylcarbazole as model compounds. This paper was presented at XIIIth International Cyclodextrin Symposium. Torino, Italy, May 14–17, 2006.  相似文献   

12.
Cyclodextrins (CDs) are cyclic oligosaccharides that form inclusion complexes with lipophilic molecules through their hydrophobic central cavity. In this study, the effect of α-CD, hydroxylpropyl-β-CD (HP-β-CD) and mixtures of these two CDs on the aqueous solubility of cyclosporine A (CyA) was investigated. Infrared spectroscopy and thermal analysis were used to confirm CyA-CD complex formation. CyA aqueous solubility was increased by 10 and 80 fold in the presence of α-CD and HP β-CD, respectively. The phase-solubility profile for HP-β-CD was linear while that for α-CD had positive deviation from linearity. In the presence of constant concentration of α-CD (15% w/v), aqueous solubility of CyA was further increased upon addition of HP-β-CD up to a concentration of 20% w/v. At higher HP-β-CD concentrations, aqueous solubility of CyA was observed to decrease. Addition of sodium acetate (up to 5% w/v) to aqueous solutions containing 20% w/v HP-β-CD and increasing concentrations of α-CD resulted in a significant reduction in CyA solubility. Complex formation between CyA and both α-CD and HP-β-CD was confirmed by differential scanning calorimetry (DSC). No significant changes were observed in the IR spectra of either CyA or CD following complex formation suggesting chemical interaction between CyA and the CD was unlikely. Phase-solubility studies showed that α-CD had a much greater effect on the solubility of CyA than HP-β-CD. Addition of HP-β-CD to aqueous solutions of α-CD affected the solubility of CyA in these systems. A mixture of 15% w/v α-CD and 20% w/v HP-β-CD was optimal for increasing aqueous solubility of CyA.  相似文献   

13.
Aim of the present work was to investigate the effect of hydroxypropyl-β-cyclodextrin (HP-β-CD) on the solubility, dissolution rate and stability of Valsartan (VAL), a drug used orally for the treatment of hypertension. Phase solubility studies demonstrated the ability of the HP-β-CD to complex VAL and to increase drug solubility. The dissolved amount of VAL increased linearly with the addition of HP-β-CD according to an AL type plot. The apparent stability constant of the complex, calculated supposing a 1:1 stoichiometry, was 296±7 M−1. VAL/HP-β-CD interactions were also studied by 13C-NMR spectroscopy. Equimolar VAL/HP-β-CD solid systems were prepared by physical-mixing and freeze-drying, and their properties in the solid state studied by DSC and FT-IR analysis. The results provided clear indications of the formation of a new solid phase corresponding to the inclusion complex in the freeze-dried sample. The dissolution profiles of the drug from each solid system were affected by its physico-chemical properties, the freeze-dried being the most rapidly dissolving form. The thermal stability of the complex was studied, also determining the number and identity of the decomposition products of the drug. The stability studies revealed that the VAL/HP-β-CD complex significantly decreases the rate of VAL degradation. These results suggest that CD technology would be a very useful method to overcome the solubility and the stability problems of VAL.  相似文献   

14.
Triacetyl α-cyclodextrin, triacetyl β-cyclodextrin and triacetyl γ-cyclodextrin were tested as possible hydrophobic carriers to prolong the release of hydrophilic teicoplanin (TCP). Physical–chemical characterization of individual components, drug-carrier physical mixtures at 0.5, 0.67 and 0.75 mass fraction of carrier, and the respective interaction products by kneading or evaporative crystallization under microwave irradiation was carried out using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). In vitro drug release in pH 7.4 phosphate buffer at 37 °C was determined by intrinsic dissolution rate (IDR) measurements on non disintegrating compressed discs. Solid-state interactions of TCP with triacetyl α-cyclodextrin by evaporative crystallization and kneading and with triacetyl β-cyclodextrin by evaporative crystallization (probably resulting in carrier amorphization) were demonstrated. The role of carrier hydrophobicity, carrier mass fraction and preparation method of solid drug-carrier combinations on solid-state drug-carrier interactions and slowing down of TCP release was assessed. Modulation of drug release can be achieved using TCP-triacetyl γ-cyclodextrin combinations at 0.5 mass fraction of carrier.  相似文献   

15.
Recently, air and ground water pollution and contamination of soil by toluene have been drawing increasing attention and became an urgently important problem in environmental pollution. Hence, the development of highly sophisticated removal techniques of toluene is required for the global environmental preservation. Since toluene is a highly volatile material, it is difficult to treat it by usual activated sludge water treatment. In this study, in order to prevent volatilization of toluene, randomly methylated β-cyclodextrin (RM-β-CD) was used to complex with toluene and by reason of that, facilitates the biodegradation of toluene by activated sludge. The enhanced effect of RM-β-CD for the biodegradation of toluene by activated sludge was studied in batch systems. The addition of RM-β-CD dominantly promoted proliferation of activated sludge. This implied that the addition of RM-β-CD prevented toluene from evaporating during treatment, and as a result, toluene was effectively decomposed by the activated sludge.  相似文献   

16.
Solubilities of tricyclic acyclovir derivatives in buffered aqueous solutions of hydroxypropyl-β-cyclodextrin (HP-β-CD) at pH 5.5 and 7.0 were determined at 25 and 37 °C. Complexation of these compounds with HP-β-CD resulted in a noticeable increase of their solubility; nevertheless it was limited to tricyclic derivatives of acyclovir carrying an aryl substituent. Combination of 1H NMR and DSC techniques demonstrated the existence of inclusion complexes between acyclovir derivatives and HP-β-CD. The stability constants, estimated using the Higuchi–Connors method, were found in the range of 10–100 M−1. Additionally, the pK a values at 25 °C and molar extinction coefficients in aqueous buffered solutions were also determined for all studied compounds.  相似文献   

17.
The electronic absorption and fluorescence spectral properties of 11-methyl-12H-benzo[a]phenothiazine (11-MeBPHT) were investigated in various media (water, ethanol, β-cyclodextrin (β-CD) and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) aqueous solutions). Fluorescence quantum yields were respectively about 20 and 2 times larger in HP-β-CD and β-CD than in water. The formation of a 1:1 stoichiometry inclusion complex between 11-MeBPHT and HP-β-CD (association constant K f=118±3 M−1 at 20 °C) was studied in aqueous medium by fluorescence spectroscopy. Analytical figures of merit were satisfactory for 11-MeBPHT with linear dynamic ranges over at least two orders of magnitude and limits of detection (LODs) between 0.2 and 1 ng/ml according to the medium. An analytical application to the determination of 11-MeBPHT in human urine samples by the standard addition procedure led to satisfactory recovery percentages (91–108%).  相似文献   

18.
The inclusion behavior of Itraconazole (Itra) with β-cyclodextrin (β-CD) and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) was investigated by using phase solubility and molecular mechanics techniques. The effects of pH and temperature on complex stabilit were also explored. The aqueous solubility of Itra was significantly enhanced as CD concentration increased. Itra tends to form 1: 3 complexes with β-and HP-β-CD at pH ≥ 4 and 1: 2 at pH 2. Thermodynamic parameters for Itra/HP-β-CD show that the 1: 1 complex is driven by enthalpy but retarded by entropy changes. In contrast, the formation of 1: 2 and 1: 3 complexes is largely favored by entropy due to higher desolvation induced by total enclosure of Itra with two (or three) favorably interacting CD molecules. The inclusion mode of Itra/β-CD complexes was proved by molecular mechanics technique, which provided a powerful means for understanding inclusion interactions and processes. Published in Russian in Zhurnal Fizicheskoi Khimii, 2006, Vol. 80, No. 7, pp. 1200–1205. The text was submitted by the authors in English.  相似文献   

19.
Spontaneous and photoinduced protonation of 4-(2-naphthyl)pyridine (1) in solutions and in complexes with β-cyclodextrin (β-CD) and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) was studied using the absorption and fluorescence spectroscopies. The structures and stabilities of complexes of compound 1 and its quaternized derivative, 1-methyl-4-(2-naphthyl)pyridinium perchlorate (3), with β-CD and HP-β-CD were examined by 1H NMR titration (logK = 1.5–2.3). The molecule of naphthylpyridine 1 is always in the cyclodextrin cavity, regardless of the pH value of the solution. 2-Hydroxypropyl-β-cyclodextrin binds better the neutral form of compound 1 than does β-CD, while naphthylpyridinium salts exhibit nearly equal affinities to both cavitands. According to spectroscopic data, pK a (1) is 5.12 in water, which favors protonation of the N atom both in the ground and excited states; as a result, the fluorescence spectrum exhibits only the band of the protonated form with a lifetime of 15 ns. The addition of HP-β-CD to a solution of naphthylpyridine 1 results in the formation of inclusion complex 1@HP-β-CD, lowers pK a to 4.62, and gives rise to a fluorescence band of the nonprotonated form of compound 1 with a lifetime of 1.25 ns. Therefore, the presence of compound 1 in the HP-β-CD cavity precludes its protonation in the excited state. The initial portions of the fluorescence curves for compound 1 in solution and in its complex with HP-β-CD obtained upon pulsed excitation were compared to propose the initiation mechanism of short-lived fluorescence of the nonprotonated form of naphthylpyridine 1. Quantum chemical modeling of the protonation and complexation of compound 1 in the presence of water was performed. Based on the results obtained, a reversible photoinduced mechanical motion of naphthylpyridine 1 in the HP-β-CD cavity was suggested.  相似文献   

20.
The interaction of piroxicam (PX) with sulfobutylether-β-cyclodextrin (SBE-β-CD) was studied by fluorescence spectroscopy and compared with that of hydroxypropyl-β-cyclodextrin (HP-β-CD). The stability constants (K) values for the PX-CDs complexes were obtained by steady-state fluorescence measurements. Inclusion conditions including concentrations of the two cyclodextrins and pH values were investigated for the complex formation in detail. The results suggested that the interaction of PX with charged CD (SBE-β-CD) is much stronger than that with uncharged CD (HP-β-CD) at any pH studied, in terms of a synergetic effect of hydrophobic and additional electrostatic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号