首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kinetic modelling is used in conjunction with measurements of product yields to develop a mechanism for the pyrolysis of ethylene at 896K and ethylene pressures ranging from approximately 3 to 78 kPa. An induction period was observed for all products except H2, and was followed by a steady rate, which was of second-order for all products except 1,3-C4H6, the most abundant product. The mechanism quantitatively accounts for the yields of H2, CH4, C2H6, C3H6, 1-C4H8 and 1,3-C4H6. The reaction is initiated by disproportionation of C2H4 and the product 1,3-C4H6 results from decomposition of the C4H7 radical, formed by addition of C2H3 to C2H4. The other organic products that were measured are formed as a result of reactions involving the C2H5 radical. The hydrogen is produced by abstraction from C2H4 by atomic hydrogen and its rate is controlled by the reaction C2H5 → C2H4 + H which is nearly equilibrated. The main termination reaction is recombination of C2H5. The auto-acceleration which is evident particularly in the yields of H2, CH4, C2 H6, and C3H6 is accounted for by the decomposition of 1-C4H8. © 1996 John Wiley & Sons Inc.  相似文献   

2.
A new thermogravimetric apparatus for studying the kinetics of metal sulphidation in a H2/H2S gas mixture is described. The main difference between this device and other equipment is the application of hydrogen to obtain a H2/H2S mixture at suitable sulphur partial pressures at a total mixture pressure of 1 atm.The use of the carrier gas allows the measurement of sulphidation kinetics under dynamic conditions and consequently over a much wider pressure range of sulphur vapour, down to 10–12 atm.The author would like to thank Dr Marek Jodko for his help in devising the chemical analysis of H2S in a H2/H2S gas mixture and for stimulating discussions relating to the design of the above apparatus.  相似文献   

3.
Permeability, diffusion, and solubility coefficients for H2O vapor in four different 6FDA-based polyimides were determined at temperatures between 25 and 45°C and over a wide range of relative humidities. The solubility of H2O vapor in some of the polyimides studied can be described by the “dual-mode sorption” model whereas in other polyimides it is represented by the Flory-Huggins equation, which suggests that the latter polymers are plasticized by H2O. The solubility of H2O vapor in the polyimides decreases as the temperature is raised and increases with increasing polarity of the polymer. The diffusion coefficients for H2O in the polyimides studied either increase or pass through a weak maximum with increasing H2O activity, or concentration in the polymers. The latter behavior is probably due to a clustering of H2O molecules in the polyimides at higher H2O activities or concentrations. The diffusion coefficients for H2O decrease as the chain-packing density of the polyimides increases. The permeability coefficients for H2O vapor in 6FDA-based polyimide membranes either increase slightly or are constant as the H2O activity is increased. The experimental values of the permeability coefficients are consistent with the values determined from diffusion and solubility coefficients. The permeability of the polyimides to H2O vapor appears to be controlled by the solubility of H2O in the polymers. The polyimides studied exhibit a very high selectivity for H2O vapor relative to CH4, and therefore are potentially useful membrane materials for the dehydration of natural gas. ©1995 John Wiley & Sons, Inc.  相似文献   

4.
The vibrational relaxation of gaseous H2 in mixtures with He, Ne, Ar, and Kr was studied by the laser Schlieren technique in incidents shock waves at 1350–3000 K. From the results of 155 experiments the following standard relaxation times for self-relaxation of H2 and relaxation of H2 by He, Ne, Ar and Kr were obtained:
pτ is in atm s, and the qouted uncertainties are standard deviations. The results for H2/H2 and H2/Ar are in very good agreement with previous results of Kiefer and Lutz, and the extrapolated for H2/H2, H2/He and H2/Ar agree very well with low temperature data Ducuing.The linear mixture rule for a additivity of relaxation rates was found to hold, to within experimental accuracy, for the mixtures studied in the present work.  相似文献   

5.
The reaction of CH4 + Cl2 produces predominantly CH3Cl + HCl, which above 1200 K goes to olefins, aromatics, and HCl. Results obtained in laboratory experiments and detailed modeling of the chlorine-catalyzed polymerization of methane at 1260 and 1310 K are presented. The reaction can be separated into two stages, the chlorination of methane and pyrolysis of methylchloride. The pyrolysis of CH3Cl formed C2H4 and C2H2 in increasing yields as the degree of conversion decreased and the excess of methane increased. Changes of temperature, pressure, or additions of HCl had little effect. In the absence of CH4 C2H4 and C2H2 are formed by the recombination of ?H3 and ?H2Cl radicals. With added CH4 recombination of ?H3 forms C2H6, which dehydrogenates to C2H4 + H2. C2H4 in turn dehydrogenates to C2H2 + H2. While HCl, C, CH4, and H2 are the ultimate stable products, C2H4, C2H2, and C6H6 are produced as intermediates and appear to approach stationary concentrations in the system. Their secondary reactions can be described by radical reactions, which can lead to soot formation. ?H3 - initiated polymerization of ethylene is negligible relative to the ?2H3 formation through H abstraction by Cl. The fastest reaction of ?2H3 is its decomposition to C2H2. About 20% of the consumption of C2H2 can be accounted for by the addition of ?2H3 to it with formation of the butadienyl radical. The addition of the latter to C2H2 is slow relative to its decomposition to vinylacetylene. Successive H abstraction by Cl from C4H4 leading to diacetylene has rates compatible with the experimental values. About 10% of ?4H5 abstracts H from HCl and forms butadiene. Successive additions of ?2H3 to butadiene and the products of addition can account for the formation of benzene, styrene, naphthalene, and higher polyaromatics. The following rate parameters have been derived on the basis of the experimentally measured reaction rates, the estimated frequency factors, and the currently available heat of formation of the ?2H3 radical (69 kcal/mol):   相似文献   

6.
A small addition of oxygen to hydrogen gas is known to mitigate the hydrogen embrittlement (HE) of steels. As atomic hydrogen dissolution in steels is responsible for embrittlement, catalysis of molecular hydrogen dissociation by the steel surface is an essential step in the embrittlement process. The most probable role of oxygen in mitigating HE is to inhibit the reactions between molecular hydrogen and the steel surface. To elucidate the mechanism of such surface reaction of hydrogen with the steel in the presence of oxygen, hydrogen, and oxygen adsorption, dissociation, and coadsorption on the Fe(100) surface were investigated using density functional theory. The results show that traces of O2 would successfully compete with H2 for surface adsorption sites due to the grater attractive force acting on the O2 molecule compared to H2. The H2 dissociation would be hindered on iron surfaces with predissociated oxygen. Prompted by the notable results for H2 + O2, other practical systems were considered, that is, H2 + CO and CH4. Calculations were performed for the CO chemisorption and H2 dissociation on iron surface with predissociated CO, as well as, CH4 surface dissociation. The results indicate that CO inhibition of H2 dissociation proceeds via similar mechanism to O2 induced inhibition, whereas CH4 traces in the H2 gas have no effect on H2 dissociation. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
A simple electrostatic model of point dipoles is used which permits direct calculation of the activation energies for the addition of the molecules H2O, H2S, H3N, and H3P to olefins. These calculated values agree with the known experimental data to within ±2 kcal/mole on the average. It was found that the best fit could be obtained with a polar transition state that corresponded to a reduction in bond order from 1 to ½ for the bond-breaking coordinates and an increase in bond order from 0 to 0.18 for the bond-forming coordinates. The replacement of a hydrogen atom of the species H2O, H2S, H3N, or H3P by a polarizable methyl group is expected to stabilize the charge on the central atoms. The following stabilization energies for the pairs H2O? CH3OH, H2S? CH3SH, H3N? CH3NH2, H3P? CH3PH2 were calculated: ?4.8 kcal/mole, ?0.7 kcal/mole, ?1.9 kcal/mole, ?0.8 kcal/mole, respectively.  相似文献   

8.
New VO2+, Mn2+, Co2+, Ni2+ Cu2+ and Zn2+ complexes of 2,5-hexanedione bis(isonicotinylhydrazone) [H2L] have been synthesized and characterized. The analyses confirmed the formulae: [VO(L)]·H2O, [Mn2(H2L)Cl2(H2O)6]Cl2, [Co(L)(H2O)2]·2H2O, [Ni(HL)(OAc)]·H2O, [Cu(L)(H2O)2]·2H2O, [Cu(L)]·2H2O and [Zn(L)(H2O)2]. The formulae of [Ni(HL)(OAc)]·H2O, [Zn(L)(H2O)2] and [Mn2(H2L)Cl2(H2O)6]Cl2, are supported by mass spectra. The molecular modeling of H2L is drawn and showed intramolecular hydrogen bonding. The ligand releases two protons during reaction from the two amide groups (NHCO) and behaves as a binegative tetradentate (N2O2); good evidence comes from the 1H NMR spectrum of [Zn(L)(H2O)2]. The ligand has a buffering range 10–12 and pK's of 4.62, 7.78 and 9.45. The magnetic moments and electronic spectra of all complexes provide a square-planar for [Cu(L)]·2H2O, square-pyramidal for [VO(L)]·H2O and octahedral for the rest. The ESR spectra support the mononuclear geometry for [VO(L)]·H2O and [Cu(L)(H2O)2]·2H2O. The thermal decomposition of the complexes revealed the outer and inner solvents where the end product in most cases is metal oxide.  相似文献   

9.
Mono‐iron hydrogenase ([Fe]‐hydrogenase) reversibly catalyzes the transfer of a hydride ion from H2 to methenyltetrahydromethanopterin (methenyl‐H4MPT+) to form methylene‐H4MPT. Its iron guanylylpyridinol (FeGP) cofactor plays a key role in H2 activation. Evidence is presented for O2 sensitivity of [Fe]‐hydrogenase under turnover conditions in the presence of reducing substrates, methylene‐H4MPT or methenyl‐H4MPT+/H2. Only then, H2O2 is generated, which decomposes the FeGP cofactor; as demonstrated by spectroscopic analyses and the crystal structure of the deactivated enzyme. O2 reduction to H2O2 requires a reductant, which can be a catalytic intermediate transiently formed during the [Fe]‐hydrogenase reaction. The most probable candidate is an iron hydride species; its presence has already been predicted by theoretical studies of the catalytic reaction. The findings support predictions because the same type of reduction reaction is described for ruthenium hydride complexes that hydrogenate polar compounds.  相似文献   

10.
Dimethylgermanium derivatives of dipeptides, Me2GeAA (H2AA = H2glygly, H2glyala, H2glyval, H2glyleu, H2glymet) have been obtained by the reaction of Me2GeBr2 with H2AA in the presence of triethylamine. The crystal structure of Me2Geglygly has been determined by single-crystal X-ray diffraction. The dipeptide is tridentately coordinated to germanium, which has a distorted trigonal bipyramidal environment. From infrared and Raman data, analogous molecular structures are inferred for the other dimethylgermanium derivatives of dipeptides. 1H NMR measurements show that Me2Geglygly is completely hydrolyzed in aqueous solution to give H2glygly and (Me2Geo)x. In vivo tests with Me2Geglygly showed no toxic or antitumor activity against murine leukemia P388.  相似文献   

11.
The density of aqueous solutions of amino acids has been modeled with the statistical associating fluid theory (SAFT) equation of state. The modeling is accomplished by extending the previously developed new method to determine the SAFT parameters for amino acids. The modeled systems include α-alanine/H2O, β-alanine/H2O, proline/H2O, l-asparagine/H2O, l-glutamine/H2O, l-histidine/H2O, serine/H2O, glycine/H2O, alanine/H2O/sucrose, dl-valine/H2O/sucrose, arginine/H2O/sucrose, serine/H2O/ethylene glycol, and glycine/H2O/ethylene glycol. The density of binary solutions of amino acids has been correlated or predicted with a high precision. And then the density of multicomponent aqueous solutions of amino acids has been modeled based on the modeling results of binary systems, and a high accuracy of density calculations has been obtained. Finally, the water activities of dl-valine/H2O, glycine/H2O, and proline/H2O have been predicted without using binary interaction parameters, and good results have been obtained.  相似文献   

12.
The hydrogen-abstraction-C2H2-addition (HACA) chemistry of naphthalenyl radicals has been studied extensively, but there is a significant discrepancy in product distributions reported or predicted in literature regarding appearance of C14H8 and C14H10 species. Starting from ab initio calculations, a comprehensive theoretical model describing the HACA chemistry of both 1- and 2-naphthalenyl radicals is generated. Pressure-dependent kinetics are considered in the C12H9, C14H9, and C14H11 potential energy surfaces including formally direct well-skipping pathways. On the C12H9 PES, reaction pathways were found connecting two entry points: 1-naphthalenyl (1-C10H7) + acetylene (C2H2) and 2-C10H7 + C2H2. A significant amount of acenaphthylene is predicted to be formed from 2-C10H7 + C2H2, and the appearance of C14H8 isomers is predicted in the model simulation, consistent with high-temperature experimental results from Parker et al. At 1500 K, 1-C10H7 + C2H2 mostly generates acenaphthylene through a formally direct pathway, which predicted selectivity of 66% at 30 Torr and 56% at 300 Torr. The reaction of 2-C10H7 with C2H2 at 1500 K yields 2-ethynylnaphthalene as the most dominant product, followed by acenaphthylene mainly generated via isomerization of 2-C10H7 to 1-C10H7. Both the 1-C10H7 and 2-C10H7 reactions with C2H2 form some C14H8 products, but negligible phenanthrene and anthracene formation is predicted at 1500 K. A rate-of-production analysis reveals that C14H8 formation is strongly affected by the rates of H-abstraction from acenaphthylene, 1-ethynylnaphthalene, and 2-ethynylnaphthalene, so the kinetics of these reactions are accurately calculated at the high level G3(MP2,CC)//B3LYP/6-311G** level of theory. At intermediate temperatures like 800 K, acenaphthylene + H are the leading bimolecular products of 1-C10H7 + C2H2, and 1-acenaphthenyl radical is the most abundant C12H9 isomer due to its stability. The predicted product distribution of 2-C10H7 + C2H2 at 800 K, in contrast to the results of Parker et al is predicted to consist primarily of species containing three fused benzene rings—for example, phenanthrene and anthracene—as the leading products, indicating HACA chemistry is valid from two to three ring polycyclic aromatic hydrocarbons under some conditions. Further experiments are needed for validation.  相似文献   

13.
A thermodynamic model developed for CO2 and H2S solubilities in aqueous MDEA solution is extended to cover CO2 and H2S solubilities in aqueous DIPA solution, aqueous sulfolane-DIPA solution, and aqueous sulfolane-MDEA solution. The model makes use of the 2009 version of the electrolyte NRTL model for liquid phase activity coefficient calculations and the PC-SAFT equation of state for vapor phase fugacity coefficient calculations. The NRTL binary parameters for the molecule-electrolyte pairs required for the H2O-DIPA-CO2 ternary and the H2O-sulfolane-DIPA-CO2 quaternary are regressed against the solubility data of CO2 in aqueous DIPA solution and aqueous sulfolane-DIPA solution, respectively. The NRTL binary parameters for the molecule-electrolyte pairs required for the H2O-DIPA-H2S ternary and the H2O-sulfolane-DIPA-H2S quaternary are regressed against the solubility data of H2S in aqueous DIPA solution and aqueous sulfolane-DIPA solution simultaneously. The NRTL binary parameters for the electrolyte-electrolyte pairs involved in the H2O-DIPA-CO2-H2S quaternary are regressed against the solubility data of the acid gas mixtures in aqueous DIPA solution. Likewise, the NRTL binary parameters for the sulfolane-electrolyte pairs required for the H2O-sulfolane-MDEA-CO2 quaternary and the H2O-sulfolane-MDEA-H2S quaternary are regressed against the solubility data of the acid gases in aqueous sulfolane-MDEA solution. The predicted enthalpies of acid gas absorption are compared favorably with the literature data available for the H2O-DIPA-CO2 system, the H2O-DIPA-H2S system, and the H2O-sulfolane-MDEA-CO2 system.  相似文献   

14.
Separation of acetylene (C2H2) from carbon dioxide (CO2) or ethylene (C2H4) is important in industry but limited by the low capacity and selectivity owing to their similar molecular sizes and physical properties. Herein, we report two novel dodecaborate‐hybrid metal–organic frameworks, MB12H12(dpb)2 (termed as BSF‐3 and BSF‐3‐Co for M=Cu and Co), for highly selective capture of C2H2. The high C2H2 capacity and remarkable C2H2/CO2 selectivity resulted from the unique anionic boron cluster functionality as well as the suitable pore size with cooperative proton‐hydride dihydrogen bonding sites (B?Hδ????Hδ+?C≡C?Hδ+???Hδ??B). This new type of C2H2‐specific functional sites represents a fresh paradigm distinct from those in previous leading materials based on open metal sites, strong electrostatics, or hydrogen bonding.  相似文献   

15.
The methanol selectivity in partial oxidation of methane in microwave plasma reactors is improved by using H2O in the presence or absence of O2. The use of H2O2 as an oxygen source has a similar effect, although it is less effective than H2O. The addition of H2 to the system has little effect on selectivity. Two pathways are suggested for the formation of methanol. One involves a CH3O* or CH3O2 * intermediate, while the other involves a direct combination of CH3 * and OH* radicals. The first pathway is favored in the presence of O2 while the latter is favored in the presence of H2O or H2O2. The best results are obtained for the CH4-O2-H2O system when methanol is formed through both pathways.  相似文献   

16.
Semi-empirical molecular orbital calculations were carried out for the compounds (C2H5)3As, (C2H5)3Ga and RAsH2 (R = C2H5, i-C3H7, i-C4H9, and t-C4H9) by using the CNDO/2-U program, and their capability of β-elimination reaction is compared on the basis of the torsion energy to the transition state, electrostatic interactions and orbital overlapping between the central atom and the β-hydrogen, and bond order of the metal-carbon, and carbon-hydrogen bond. In the comparison of (C2H5)3As with (C2H5)3Ga, we found that the β-elimination of (C2H5)3As could hardly be expected to take place in the thermal decomposition. The capability of β-elimination would be smaller in C2H5AsH2 than that in (C2H5)3As. Moreover when the ethyl group is replaced by a t-butyl group in RAsH2, the β-elimination reaction appears to become more difficult and a large possibility for a radical process is suggested.  相似文献   

17.
Decomposition of mineral sphene, CaTiOSiO4, by H3PO4 is investigated in detail. During the dissolution process, simultaneous calcium leaching and formation of titanium phosphate (TiP) take place. The main product of decomposition is a solid titanium phosphate-silica composite. The XRD, solid-sate NMR, IR, TGA, SEM and BET data were used to identify and characterize the composite as a mixture of crystalline Ti(HPO4)2·H2O and silica. When 80% phosphoric acid is used the decomposition degree is higher than 98% and calcium is completely transferred into the liquid phase. Formation of Ti(HPO4)2·H2O proceeds via formation of meta-stable titanium phosphate phases, Ti(H2PO4)(PO4)·2H2O and Ti(H2PO4)(PO4).The sorption affinities of TiP composites were examined in relation to caesium and strontium ions. A decrease of H3PO4 concentration leads to formation of composites with greater sorption properties. The maximum sorption capacity of TiP is observed when 60% H3PO4 is used in sphene decomposition.The work demonstrates a valuable option within the Ti(HPO4)2·H2O-SiO2 composite synthesis scheme, to use phosphoric acid flows for isolation of CaHPO4·2H2O fertilizer.  相似文献   

18.
Results of a study of the kinetics of manganese dioxide leaching from pores in anodes of solid-electrolyte capacitors are presented. It is shown that manganese dioxide present in pores is the most effectively dissolved at room temperature under treatment with dilute solutions of sulfuric and hydrochloric acids to which hydrogen peroxide is added in not-less-than-stoichiometric amounts according to the reactions MnO2 + H2SO4 + H2O2 = MnSO4 + 2H2O + O2?? and MnO2 + 2HCl + H2O2 = MnCl2 + 2H2O + O2??. The initial acid concentration does not exceed 36% for H2SO4 and 18% for HCl.  相似文献   

19.
Intermolecular potential energy curves for the hydrogen bonded systems H2O·H2S, H2O·H2Se and H2S·H2S were calculated with nonempirical pseudopotentials using optimized-in-molecules basis sets augmented by polarization functions. The H2O·H2O interaction energy curve has been also considered as a test case. The present results for H2O·H2S and H2S·H2S indicate much weaker intermolecular interactions than those found in previous ab initio calculations. The H2O·H2Se interaction was found to be quite similar to H2O·H2S.This work was partly supported by the Polish Academy of Sciences within the Project PAN-09, 7.1.1.1On leave from Quantum Chemistry Laboratory, Dept. of Chemistry, University of Warsaw, Pasteura 1, 02-093. Warsaw, Poland  相似文献   

20.
The bis-Schiff bases of N2O2 dibasic ligands, H2La and H2Lb are synthesized by the condensation of ethylenediamine (a) and trimethylenediamine (b) with 6-formyl-7-hydroxy-5-methoxy-2-methylbenzo-pyran-4-one. The ligands are characterized using elemental analysis, IR, UV–Vis, 1H-NMR and mass spectroscopy. The ionization constant pKa values are determined spectrophotometrically. The 1H-NMR spectra of the ligands show the presence of phenolic coordinating groups. New complexes of H2La and H2Lb with metal ions Cr(III), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) are synthesized. Elemental analyses, infrared, ultraviolet-visible, electron spin resonance and thermal analysis, as well as conductivity and magnetic susceptibility measurements, are used to elucidate the structures of the newly prepared metal complexes. Thermal degradation studies for some complexes show that the final product is the metal oxide. A square planar geometry is suggested for the Cu(II), Zn(II) (for H2La and H2Lb) and Ni(II) (for H2La) complexes; an octahedral geometry for the Co(II), Cr(III), Fe(III) (for H2La and H2Lb), and Ni(II) (for H2Lb) complexes. The coordination sites are two azomethine nitrogens and two phenolic oxygens in the tetradentate Schiff bases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号