首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
 This work provides a comprehensive theoretical analysis of a two-dimensional unsteady free convection flow of an incompressible, visco-elastic fluid past an infinite vertical porous plate. Solutions for the zero order perturbation velocity profile, the first order perturbation velocity and temperature profiles in closed form are obtained with the help of Laplace transform technique. The numerical solutions are carried out for the Prandtl number 0.1, 0.72, 1.0, 1.5 and 2.0 which are appropriate for different types of liquid metals and for different values of magnetic field parameter, M. Received on 1 September 1999  相似文献   

2.
A numerical solution of the first-order homogeneous chemical reaction in an unsteady free convective flow past a semi-infinite vertical plate is studied. The dimensionless governing equations are solved by an efficient, more accurate, unconditionally stable, and rapidly converging implicit finite-difference scheme. The effect of various parameters, such as the Prandtl number, Schmidt number, buoyancy ratio parameter, and chemical reaction parameter on flow velocity and temperature is determined. The velocity profiles are in excellent agreement with available results in the literature. The local and average values of skin friction and Nusselt and Sherwood numbers are calculated. The effects of the chemical reaction parameters on these values are discussed for both generative and destructive reactions. Owing to the presence of the first-order chemical reaction, the velocity is found to increase in the generative reaction and to decrease in the destructive reaction.  相似文献   

3.
In this paper, we investigate the steady momentum and heat transfer of a viscous fluid flow over a stretching/shrinking sheet. Exact solutions are presented for the Navier-Stokes equations. The new solutions provide a more general formulation including the linearly stretching and shrinking wall problems as well as the asymptotic suction velocity profiles over a moving plate. Interesting non-linear phenomena are observed in the current results including both exponentially decaying solution and algebraically decaying solution, multiple solutions with infinite number of solutions for the flow field, and velocity overshoot. The energy equation ignoring viscous dissipation is solved exactly and the effects of the mass transfer parameter, the Prandtl number, and the wall stretching/shrinking strength on the temperature profiles and wall heat flux are also presented and discussed. The exact solution of this general flow configuration is a rare case for the Navier-Stokes equation.  相似文献   

4.
Summary In this paper, the steady-state dynamic response of an embedded railway track to a moving train is investigated theoretically. The model for the track consists of a flexible plate performing vertical vibrations, two beams that are connected to the plate by continuous visco-elastic elements and an elastic foundation that supports the plate. Two harmonic loads that move uniformly along the beams describe the train load. The plate, the beams and the elastic foundation are employed to model a concrete slab of an embedded track, the rails and the ground reaction, respectively. The problem is studied by employing the Fourier integral transforms in the following way. Firstly, the dispersion analysis of waves that may propagate along the system is accomplished in the frequency-wavenumber domain. On the basis of this analysis, critical velocities of the loads are found both for the in-phase and anti-phase vibrations of the loads. Secondly, the vertical displacement of the rails and the slab, along with the stresses in the slab, are investigated as functions of the velocity and frequency of the loads. Finally, the response of the two-dimensional model is compared to that of a simplified one-dimensional model.  相似文献   

5.
The problem of boundary-layer flow and heat transfer of a non-Newtonian power-law fluid over a moving porous infinite flat plate in the presence of viscous dissipation and heat generation or absorption is investigated analytically. It is assumed that both the momentum and the energy equations are coupled by the stress friction factor, and an assumption is introduced regarding the heat-transfer index. It is found that exact analytical solutions for velocity and temperature exist only for pseudoplastic fluids in the presence of suction at the surface. The effects of the suction parameter, Eckert number, and the heat generation or absorption parameter on the velocity and temperature profiles, as well as on the skin-friction coefficient and Nusselt number are discussed.  相似文献   

6.
This paper considers the extended classical Blasius and Sakiadis equations, by considering a uniform free stream parallel to a fixed or moving flat plate, which has more practical significance. It is assumed that the plate is subjected to a constant heat flux, and moves in the same or opposite direction to the free stream. The resulting system of nonlinear ordinary differential equations is solved numerically using a finite-difference method. Numerical results are obtained for the skin friction coefficient and the local Nusselt number as well as the velocity and temperature profiles for some values of the governing parameters, namely the velocity ratio parameter and the Prandtl number. The results indicate that dual solutions exist when the plate and the free stream move in the opposite directions.  相似文献   

7.
The flow of an upper-convected Maxwell (UCM) fluid is studied theoretically above a rigid plate moving steadily in an otherwise quiescent fluid. It is assumed that the Reynolds number of the flow is high enough for boundary layer approximation to be valid. Assuming a laminar, two-dimensional flow above the plate, the concept of stream function coupled with the concept of similarity solution is utilized to reduce the governing equations into a single third-order ODE. It is concluded that the fluid's elasticity destroys similarity between velocity profiles; thus an attempt was made to find local similarity solutions. Three different methods will be used to solve the governing equation: (i) the perturbation method, (ii) the fourth-order Runge-Kutta method, and (iii) the finite-difference method. The velocity profiles obtained using the latter two methods are shown to be virtually the same at corresponding Deborah number. The velocity profiles obtained using perturbation method, in addition to being different from those of the other two methods, are dubious in that they imply some degree of reverse flow. The wall skin friction coefficient is predicted to decrease with an increase in the Deborah number for Sakiadis flow of a UCM fluid. This prediction is in direct contradiction with that reported in the literature for a second-grade fluid.  相似文献   

8.
The effects of Joule-heating, chemical reaction and thermal radiation on unsteady MHD natural convection from a heated vertical porous plate in a micropolar fluid are analyzed. The partial differential equations governing the flow and heat and mass transfer have been solved numerically using an implicit finite-difference scheme. The case corresponding to vanishing of the anti-symmetric part of the stress tensor that represents weak concentrations is considered. The numerical results are validated by favorable comparisons with previously published results. A parametric study of the governing parameters, namely the magnetic field parameter, suction/injection parameter, radiation parameter, chemical reaction parameter, vortex viscosity parameter and the Eckert number on the linear velocity, angular velocity, temperature and the concentration profiles as well as the skin friction coefficient, wall couple stress coefficient, Nusselt number and the Sherwood number is conducted. A selected set of numerical results is presented graphically and discussed.  相似文献   

9.
Laminar boundary layers generated by power-law plate stretching with cross flows are studied. Only the stretching solutions of Banks [10] are considered, those being bounded by exponentially stretched plates. In one case the cross flow is generated by a uniform transverse stream far above the stretching plate or a wall moving with uniform transverse velocity. Two other cases deal with cross flows generated by transverse shearing motions of the surface. Possible two parameter solutions appear, but here we present two one-parameter families of cross flow solutions generated by transverse plate shearing motion. Streamwise and transverse shear stresses and velocity profiles are displayed in graphical form.  相似文献   

10.
The laminar two-dimensional flow over a stepwise accelerated flat plate moving with hypersonic speed at zero angle of attack is analysed. The governing equations in the self-similar form are linearized and solved numerically for small times. The solutions obtained are the deviations of the velocity and the temperature profiles from those of steady state. The presented results may be used to find the first order boundary layer induced pressure on the plate.  相似文献   

11.
The chemical reaction effect on an unsteady magnetohydrodynamic (MHD) flow past a semi-infinite vertical porous plate with viscous dissipation is analyzed. The governing equations of motion, energy, and species are transformed into ordinary differential equations (ODEs) using the time dependent similarity parameter. The resultant ODEs are then solved numerically by a finite element method. The effects of various parameters on the velocity, temperature, and concentration profiles are presented graphically, and the values of the skin-friction, Nusselt number, and Sherwood number for various values of physical parameters are presented through tables.  相似文献   

12.
An exact and a numerical solutions to the problem of a steady mixed convective MHD flow of an incompressible viscous electrically conducting fluid past an infinite vertical porous plate with combined heat and mass transfer are presented.A uniform magnetic field is assumed to be applied transversely to the direction of the flow with the consideration of the induced magnetic field with viscous and magnetic dissipations of energy.The porous plate is subjected to a constant suction velocity as well as a uniform mixed stream velocity.The governing equations are solved by the perturbation technique and a numerical method.The analytical expressions for the velocity field,the temperature field,the induced magnetic field,the skin-friction,and the rate of heat transfer at the plate are obtained.The numerical results are demonstrated graphically for various values of the parameters involved in the problem.The effects of the Hartmann number,the chemical reaction parameter,the magnetic Prandtl number,and the other parameters involved in the velocity field,the temperature field,the concentration field,and the induced magnetic field from the plate to the fluid are discussed.An increase in the heat source/sink or the Eckert number is found to strongly enhance the fluid velocity values.The induced magnetic field along the x-direction increases with the increase in the Hartmann number,the magnetic Prandtl number,the heat source/sink,and the viscous dissipation.It is found that the flow velocity,the fluid temperature,and the induced magnetic field decrease with the increase in the destructive chemical reaction.Applications of the study arise in the thermal plasma reactor modelling,the electromagnetic induction,the magnetohydrodynamic transport phenomena in chromatographic systems,and the magnetic field control of materials processing.  相似文献   

13.
We solve the time-dependent simple shear flow of a Johnson–Segalman fluid with added Newtonian viscosity. We focus on the case where the steady-state shear stress/shear rate curve is not monotonic. We show that, in addition to the standard smooth linear solution for the velocity, there exists, in a certain range of the velocity of the moving plate, an uncountable infinity of steady-state solutions in which the velocity is piecewise linear, the shear stress is constant and the other stress components are characterized by jump discontinuities. The stability of the steady-state solutions is investigated numerically. In agreement with linear stability analysis, it is shown that steady-state solutions are unstable only if the slope of a linear velocity segment is in the negative-slope regime of the shear stress/shear rate curve. The time-dependent solutions are always bounded and converge to a stable steady state. The number of the discontinuity points and the final value of the shear stress depend on the initial perturbation. No regimes of self-sustained oscillations have been found.  相似文献   

14.
The stress field, crack-tip plastic zones and total plastic displacement created around an infinite row of collinear elastoplastic constant width Griffith-type strip cracks moving within an orthotropic crystal are considered using the powerful method of dislocation layers. The method is applied with the BCS modelled elastoplastic cracks moving under mode III loading at constant crack-tip velocity, according to the Yoffe model. Simultaneously the analysis provides solutions for a corresponding single crack moving similarly within a finite orthotropic plate and a finite plate containing a surface crack. Analogous results for the corresponding mode I, mode II and purely elastic cracks can be deduced.  相似文献   

15.
Similarity analysis of diffusion of chemically reactive solute distribution in MHD boundary layer flow of an electrically conducting incompressible fluid over a porous flat plate is presented. The reaction rate of the solute is considered inversely proportional along the plate. Adopting the similarity transformation technique the governing equations are converted into the self-similar ordinary differential equations which are solved by shooting procedure using Runge-Kutta method. For increase of the Schmidt number the solute boundary layer thickness is reduced. Most importantly, the effects of reaction rate and order of reaction on concentration field are of conflicting natures, due to increasing reaction rate parameter the concentration decreases, but for the increase in order of reaction it increases. In presence of chemical reaction, the concentration profiles attain negative value when Schmidt number is large.  相似文献   

16.
A study of laminar natural convection flow over a semi-infinite vertical plate at constant species concentration is examined. The plate is maintained at a given concentration of some chemical species while convection is induced by diffusion into and chemical reaction with the ambient fluid. In the absence of chemical reaction, a similarity transform is possible. When chemical reaction occurs, perturbation expansions about an additional similarity variable dependent on reaction rate must be employed. Two fundamental parameters of the problem are the Schmidt number, Sc, and the reaction order, n. Results are presented for the Schmidt number ranging from 0.01 to 10000 and reaction order up to 5. In the presence of a chemical reaction, the diffusion and velocity domains expand out from the plate. This results in a larger, less distinct convection layer. Received 21 July 1998 and accepted 24 June 1999  相似文献   

17.
The out-of-plane dynamic response of a moving plate, travelling between two rollers at a constant velocity, is studied, taking into account the mutual interaction between the vibrating plate and the surrounding, axially flowing ideal fluid. Transverse displacement of the plate (assumed cylindrical) is described by an integro-differential equation that includes a local inertia term, Coriolis and centrifugal forces, the aerodynamic reaction of the external medium, the vertical projection of membrane tension, the bending resistance, and external perturbation forces. In the two-dimensional model thus set up, the aerodynamic reaction is found analytically as a functional of the cylindrical displacement, using the techniques of complex analysis. The resulting integro-differential problem is discretized in space with the Fourier-Galerkin method, and integrated in time with the diagonalization method. Examples are computed with physical parameters corresponding to air and some paper materials. The effects of the surrounding fluid on the critical velocity and first natural frequency are investigated, for stationary air, for an air mass moving with the plate, and for some arbitrary axial fluid velocities. The obtained results are applicable for both an ideal membrane and a plate with nonzero bending rigidity.  相似文献   

18.
Some models for axially moving orthotropic thin plates are investigated analytically via methods of complex analysis to derive estimates for critical plate velocities. The linearized Kirchhoff plate theory is used, and the energy forms of steady-state models are considered with homogeneous and inhomogeneous tension profiles in the cross direction of the plate. With the help of the energy forms, some limits for the divergence velocity of the plate are found analytically. In numerical examples, the derived lower limits for the divergence velocity are analyzed for plates with small flexural rigidity.  相似文献   

19.
The problem of steady, laminar, thermosolutal Marangoni convection flow of an electrically-conducting fluid along a vertical permeable surface in the presence of a magnetic field, heat generation or absorption and a first-order chemical reaction effects is studied numerically. The general governing partial differential equations are converted into a set of self-similar equations using unique similarity transformations. Numerical solution of the similarity equations is performed using an implicit, iterative, tri-diagonal finite-difference method. Comparisons with previously published work is performed and the results are found to be in excellent agreement. Approximate analytical results for the temperature and concentration profiles as well as the local Nusselt and sherwood numbers are obtained for the conditions of small and large Prandtl and Schmidt numbers are obtained and favorably compared with the numerical solutions. The effects of Hartmann number, heat generation or absorption coefficient, the suction or injection parameter, the thermo-solutal surface tension ratio and the chemical reaction coefficient on the velocity, temperature and concentration profiles as well as quantitites related to the wall velocity, boundary-layer mass flow rate and the Nusselt and Sherwood numbers are presented in graphical and tabular form and discussed. It is found that a first-order chemical reaction increases all of the wall velocity, Nusselt and Sherwood numbers while it decreases the mass flow rate in the boundary layer. Also, as the thermo-solutal surface tension ratio is increased, all of the wall velocity, boundary-layer mass flow rate and the Nusselt and Sherwood numbers are predicted to increase. However, the exact opposite behavior is predicted as the magnetic field strength is increased.  相似文献   

20.
The unsteady magnetohydrodynamic flow of a nanofluid past an oscillatory moving vertical permeable semi-infinite flat plate with constant heat source in a rotating frame of reference is theoretically investigated. The velocity along the plate (slip velocity) is assumed to oscillate on time with a constant frequency. The analytical solutions of the boundary layer equations are assumed of oscillatory type and they are obtained by using the small perturbation approximations. The influence of various relevant physical characteristics are presented and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号