首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.

The effects of varying turbulence intensity and turbulence length scale on premixed turbulent flame propagation are investigated using Direct Numerical Simulation (DNS). The DNS dataset contains the results of a set of turbulent flame simulations based on separate and systematic changes in either turbulence intensity or turbulence integral length scale while keeping all other parameters constant. All flames considered are in the thin reaction zones regime. Several aspects of flame behaviour are analysed and compared, either by varying the turbulence intensity at constant integral length scale, or by varying the integral length scale at constant turbulence intensity. The turbulent flame speed is found to increase with increasing turbulence intensity and also with increasing integral length scale. Changes in the turbulent flame speed are generally accounted for by changes in the flame surface area, but some deviation is observed at high values of turbulence intensity. The probability density functions (pdfs) of tangential strain rate and mean flame curvature are found to broaden with increasing turbulence intensity and also with decreasing integral length scale. The response of the correlation between tangential strain rate and mean flame curvature is also investigated. The statistics of displacement speed and its components are analysed, and the findings indicate that changes in response to decreasing integral length scale are broadly similar to those observed for increasing turbulence intensity, although there are some interesting differences. These findings serve to improve current understanding of the role of turbulence length scales in flame propagation.

  相似文献   

2.
Spatial resolution of PIV for the measurement of turbulence   总被引:3,自引:3,他引:0  
Recent technological advancements have made the use of particle image velocimetry (PIV) more widespread for studying turbulent flows over a wide range of scales. Although PIV does not threaten to make obsolete more mature techniques, such as hot-wire anemometry (HWA), it is justifiably becoming an increasingly important tool for turbulence research. This paper assesses the ability of PIV to resolve all relevant scales in a classical turbulent flow, namely grid turbulence, via a comparison with theoretical predictions as well as HWA measurements. Particular attention is given to the statistical convergence of mean turbulent quantities and the spatial resolution of PIV. An analytical method is developed to quantify and correct for the effect of the finite spatial resolution of PIV measurements. While the present uncorrected PIV results largely underestimate the mean turbulent kinetic energy and energy dissipation rate, the corrected measurements agree to a close approximation with the HWA data. The transport equation for the second-order structure function in grid turbulence is used to establish the range of scales affected by the limited resolution. The results show that PIV, due to the geometry of its sensing domain, must meet slightly more stringent requirements in terms of resolution, compared with HWA, in order to provide reliable measurements in turbulence.
P. LavoieEmail:
  相似文献   

3.
The influence of peak-locking errors on turbulence statistics computed from ensembles of PIV data is considered. PIV measurements are made in the streamwise–wall-normal plane of turbulent channel flow. The PIV images are interrogated in three distinct ways, generating ensembles of velocity fields with absolute, moderate, and minimal peak locking. Turbulence statistics computed for all three ensembles of data indicate a general sensitivity to peak locking in the single-point statistics, except for the mean velocity profile. Peak-locking errors propagate into the fluctuations of velocity, rendering single-point statistics inaccurate when severe peak locking is present. Multi-point correlations of both streamwise and wall-normal velocity are also found to be influenced by severe levels of peak locking. The displacement range of the measurement, defined by the PIV time delay, appears to affect the influence of peak-locking errors on turbulence statistics. Smaller displacement ranges, particularly those that produce displacement fluctuations that are less than one pixel in magnitude, yield inaccurate turbulence statistics in the presence of peak locking.  相似文献   

4.
Measuring turbulence energy with PIV in a backward-facing step flow   总被引:4,自引:0,他引:4  
Turbulence energy is estimated in a backward-facing step flow with three-component (3C, stereo) particle image velocimetry (PIV). Estimates of turbulence energy transport equation for convection, turbulence transport, turbulence production, viscous diffusion, and viscous dissipation in addition to Reynolds stresses are computed directly from PIV data. Almost all the turbulence energy terms in the backward-facing step case can be measured with 3C PIV, except the pressure-transport term, which is obtained by difference of the other turbulence energy terms. The effect of the velocity spatial sampling resolution in derivative estimations is investigated with four two-dimensional PIV measurement sets. This sampling resolution information is used to calibrate the turbulence energies estimated by 3C PIV measurements. The focus of this study is on the separated shear layer of the backward-facing step. The measurements with 3C PIV are carried out in a turbulent water flow at Reynolds number of about 15,000, based on the step height h and the inlet streamwise maximum mean velocity U0. The expansion ratio (ER) is 1.5. Turbulence energy budget profiles in locations x/h=4, x/h=6, and x/h=10 are compared with DNS data of a turbulent flow. The shapes of profiles agree well with each other. Different ERs between the PIV case (1.5) and the DNS case (1.2) cause higher values for the turbulence energies measured by PIV than the energies by DNS when x/h=10 is approached. PIV results also show that the turbulence energy level in these experiments is generally higher than that of the DNS data.  相似文献   

5.
6.
The multi-scale structures of turbulent wakes generated by three kinds of bluff body, i.e. circular cylinder, square cylinder and compound of cylinder and square (CS) cylinders, have been experimentally investigated in this paper. Firstly, the instantaneous velocity fields and vorticity were measured by the high-speed PIV technique in a circulating water channel. The instantaneous streamlines and corresponding normalized vorticity contours are obtained at a Reynolds number of 5600. Then one- and two-dimensional wavelet multi-resolution technique was used to analyze the instantaneous velocities and vorticity measured by the high-speed PIV. The turbulence structures were separated into a number of subsets based on their central frequencies, which are linked with the turbulence scales. The instantaneous vorticity and Reynolds shear stresses of various scales were examined and compared between the three generators. It is found that the large-scale turbulent structure makes the largest contribution to the vorticity and Reynolds shear stresses for the three wake generators and exhibits a strong dependence upon the initial conditions or the wake generators. The large-scale vorticity and the sizes of vortex in the circular and square cylinders are larger than those in the CS cylinder wake. The contributions to the Reynolds shear stresses from the large-scale turbulent structures account for 90-96% to the measured maximum Reynolds shear stresses for the three wakes. However, the small-scale structures make less contribution to the vorticity and Reynolds shear stresses.  相似文献   

7.
邓莹莹  时钟 《实验力学》2021,(2):205-222
采用室内实验混合箱和粒子图像测速技术,本文研究了稳定分层无平均剪切二层流(上层淡水、下层盐水)振动湍流结构.对实验录像进行粒子图像测速技术处理,获得垂向二维流场(垂直于格栅平面)瞬时速度和涡量,并用于计算:①时均速度和时均涡量;②均方根速度;③均匀程度和各向同性程度;④平均流强度;⑤时均泰勒的欧拉积分长度尺度;⑥时均湍...  相似文献   

8.
Time-developing direct numerical simulation (DNS) was performed to clarify the higher-order turbulent behaviors in the thermally-driven boundary layers both in air and water along a heated vertical flat plate. The predicted statistics of the heat transfer rates and the higher-order turbulent behaviors such as skewness factors, flatness factors and spatial correlation coefficients of the velocity and temperature fluctuations in the natural-convection boundary layer correspond well with those obtained from experiments for space-developing flows. The numerical results reveal that the turbulent structures of the buoyancy-driven boundary layers are mainly controlled by the fluid motions in the outer region of the boundary layer, and these large-scale structures are strongly connected with the generation of turbulence in the thermally-driven boundary layers, in accordance with the actual observations for space-developing flows. Moreover, to specify the turbulence structures of the boundary layers, the cross-correlation coefficients and the characteristic length scales are examined for the velocity and thermal fields. Consequently, it is found that with a slight increase in freestream velocity, the cross-correlation coefficient for the Reynolds shear stress and turbulent heat flux increases for opposing flow and decreases for aiding flow, and the integral scales for the velocity and temperature fields become larger for opposing flow and smaller for aiding flow compared with those for the pure natural-convection boundary layer.  相似文献   

9.
Particle image velocimetry (PIV) was employed to study the flow patterns, time-averaged velocity field, and turbulence properties of the flow in the interdisk midplane between two shrouded co-rotating disks at the interdisk spacing to disk radius ratio S = 0.1 and rotating Reynolds number Re = 2.25 × 105. A quadrangle core flow structure rotating at a frequency 75% of the disks’ rotating frequency was observed. The flow in the region outside the quadrangle core flow structure consisted of four cellular flow structures. Five characteristic flow regions—the hub-influenced region, solid-body rotation region, buffer region, vortex region, and shroud-influenced region—were identified in the flow field. Circumferential and radial turbulence intensities, Reynolds stresses, turbulence kinetic energy, correlation coefficients, as well as the Lagrangian integral time and length scales of turbulent fluctuations were analyzed and presented. Features of the turbulence properties were found to be closely related to the rotation motion of the inner and outer characteristic flow structures. The circumferential components of the turbulence properties exhibited local minima in the buffer region and maxima in the solid-body rotation and vortex regions, while the radial components of the turbulence intensity, turbulent normal stress, and Lagrangian integral turbulence time scale exhibited maximum values in the buffer region and relatively low values in the regions near the hub and the shroud.  相似文献   

10.
The effects of mean flame radius and turbulence on self-sustained combustion of turbulent premixed spherical flames in decaying turbulence have been investigated using three-dimensional direct numerical simulations (DNS) with single step Arrhenius chemistry. Several flame kernels with different initial radius or initial turbulent field have been studied for identical conditions of thermo-chemistry. It has been found that for very small kernel radius the mean displacement speed may become negative leading ultimately to extinction of the flame kernel. A mean negative displacement speed is shown to signify a physical situation where heat transfer from the kernel overcomes the heat release due to combustion. This mechanism is further enhanced by turbulent transport and, based on simulations with different initial turbulent velocity fields, it has been found that self-sustained combustion is adversely affected by higher turbulent velocity fluctuation magnitude and integral length scale. A scaling analysis is performed to estimate the critical radius for self-sustained combustion in premixed flame kernels in a turbulent environment. The scaling analysis is found to be in good agreement with the results of the simulations.  相似文献   

11.
This paper assesses the spatial resolution and accuracy of tomographic particle image velocimetry (PIV). In tomographic PIV the number of velocity vectors are of the order of the number of reconstructed particle images, and sometimes even exceeds this number when a high overlap fraction between adjacent interrogations is used. This raises the question of the actual spatial resolution of tomographic PIV in relation to the various flow scales. We use a Taylor--Couette flow of a fluid between two independently rotating cylinders and consider three flow regimes: laminar flow, Taylor vortex flow and fully turbulent flow. The laminar flow has no flow structures, and the measurement results are used to assess the measurement uncertainty and to validate the accuracy of the technique for measurements through the curved wall. In the Taylor vortex flow regime, the flow contains large-scale flow structures that are much larger than the size of the interrogation volumes and are fully resolved. The turbulent flow regime contains a range of flow scales. Measurements in the turbulent flow regime are carried out for a Reynolds number Re between 3,800 and 47,000. We use the measured torque on the cylinders to obtain an independent estimate of the energy dissipation rate and estimate of the Kolmogorov length scale. The data obtained by tomographic PIV are assessed by estimating the dissipation rate and comparing the result against the dissipation rate obtained from the measured torque. The turbulent flow data are evaluated for different sizes of the interrogation volumes and for different overlap ratios between adjacent interrogation locations. The results indicate that the turbulent flow measurements for the lowest Re could be (nearly) fully resolved. At the highest Re only a small fraction of the dissipation rate is resolved, still a reasonable estimate of the total dissipation rate could be obtained by means of using a sub-grid turbulence model. The resolution of tomographic PIV in these measurements is determined by the size of the interrogation volume. We propose a range of vector spacing for fully resolving the turbulent flow scales. It is noted that the use of a high overlap ratio, that is, 75?%, yields a substantial improvement for the estimation of the dissipation rate in comparison with data for 0 and 50?% overlap. This indicates that additional information on small-scale velocity gradients can be obtained by reducing the data spacing.  相似文献   

12.
Stationary and non-stationary grid-generated turbulence was studied using a complementary technique that combines empirical mode decomposition (EMD) and triple-decomposition. Non-stationary conditions were generated by superimposing periodic and random fluctuations on the original flow. Empirical mode decomposition (EMD) was applied as a filter to separate these fluctuations from the turbulent velocity component. Triple-decomposition was then used and the turbulent intensity, the integral length scales and the Power Spectral Density of the velocity were determined. How to use EMD in order to optimize this decomposition is discussed. Finally, the properties of the turbulence are compared to those characterized without addition of fluctuations and a good agreement is found.  相似文献   

13.
In-cylinder air flow structures are known to play a major role in mixture preparation and flame development in spark-ignition engines. In this paper both LDV and PIV measurements were undertaken in an optical spark-ignition at 1500 RPM 0.5 bar inlet plenum pressure. One of the primary PIV planes was vertical cutting through the centrally located spark plug (tumble plane) inside the pentroof at ignition timing. The other plane was horizontal inside the pentroof 1 mm below the spark plug LDV was conducted 1 mm below the spark plug on a line from inlet to exhaust but also on a lower line 14 mm below the spark plug. In-cylinder PIV data at specific crank angles in the intake and compression strokes were also analysed on the central tumble plane and on a horizontal plane 14 mm below the spark plug. The combination of both techniques allowed high spatial and temporal resolution as the two data sets complemented each other to provide details of mean flow and turbulence characteristics on different levels, aiming ultimately for quantification of integral time scales and length scales. LDV cycle-resolved analysis distinguished between the classic approach of using the time integral of the autocorrelation function to obtain the integral time scale and a high-frequency cut-off analysis to obtain high- and low-frequency fluctuations about an in-cycle mean.  相似文献   

14.
Particle image velocimetry (PIV) data have been acquired using three different experimental configurations in the far-field of the interaction created by a transverse supersonic jet exhausting from a flat plate into a transonic crossflow. The configurations included two-component PIV in the centerline streamwise plane at two overlapping stations, as well as stereoscopic PIV in both the same streamwise plane and in the crossplane. All measurement planes intersected at a common line. Data from both two-component measurement stations and the stereoscopic streamwise configuration agreed to within the estimated uncertainty, but data from the crossplane exhibited reduced velocity and turbulent stress magnitudes by a small but significant degree. Subsequent reprocessing of the data in nominally the same manner using a newer software package brought all values into close agreement with each other, but produced substantially higher turbulent stresses. The error source associated with the choice of software was traced to the use of image deformation in the newer software to treat velocity gradients, which is shown by synthetic PIV tests to yield a more accurate result for turbulence measurements even for gradients within the recommended limits for classical PIV. These detailed comparisons of replicate data suggest that routine methods of uncertainty quantification used for a turbulent PIV experiment may not fully capture the actual error sources.  相似文献   

15.
The influence of Free-Stream Turbulence (FST) on the space–time dynamics of a conical vortex developing along a A-pillar is studied experimentally. Measurements of unsteady wall pressure and velocity by High Speed-Stereo PIV highlight the important effects of turbulence on the mean and instantaneous properties of the vortex. Very significant increases in Reynolds stresses into the vortex region and in wall fluctuating pressure are observed in the presence of FST. In smooth flow, the frequency content of the pressure and velocity fields is very rich with low and high frequency contributions due to the meandering of the vortex and instabilities in the vortex core. Meandering shows, for the different integral length scales and intensities of turbulence tested, a great receptivity to the presence of a FST and we observe a global motion of the vortex structure at low frequency. This frequency is modulated by the value of the integral length scale of the FST. We show that the mean conical structure is a wave guide for the perturbations of the core but that, with FST, the spatio-temporal evolution of the envelope overwhelms the intrinsic instability of the vortex core observed in smooth flow.  相似文献   

16.
In high-velocity open channel flows, the measurements of air–water flow properties are complicated by the strong interactions between the flow turbulence and the entrained air. In the present study, an advanced signal processing of traditional single- and dual-tip conductivity probe signals is developed to provide further details on the air–water turbulent level, time and length scales. The technique is applied to turbulent open channel flows on a stepped chute conducted in a large-size facility with flow Reynolds numbers ranging from 3.8E+5 to 7.1E+5. The air water flow properties presented some basic characteristics that were qualitatively and quantitatively similar to previous skimming flow studies. Some self-similar relationships were observed systematically at both macroscopic and microscopic levels. These included the distributions of void fraction, bubble count rate, interfacial velocity and turbulence level at a macroscopic scale, and the auto- and cross-correlation functions at the microscopic level. New correlation analyses yielded a characterisation of the large eddies advecting the bubbles. Basic results included the integral turbulent length and time scales. The turbulent length scales characterised some measure of the size of large vortical structures advecting air bubbles in the skimming flows, and the data were closely related to the characteristic air–water depth Y 90. In the spray region, present results highlighted the existence of an upper spray region for C > 0.95–0.97 in which the distributions of droplet chord sizes and integral advection scales presented some marked differences with the rest of the flow.  相似文献   

17.
Particle image velocimetry (PIV) has been used in order to measure the three mean components and turbulence intensities of the velocity vector in a swirling decaying flow induced by a tangential inlet in an annulus. This kind of flow motion is found to be very complex, exhibiting three-dimensional and non-axisymmetric characteristics coupled with a free decay of the swirling intensity along the flow path, thereby making it difficult to study. A method allowing the measurement of the three components of the velocity flow-field with a standard PIV system with two-dimensional acquisitions, is presented. The evolution of each velocity component between the inlet and the outlet of the annulus is obtained. Furthermore, the PIV technique is extended to the measurement of turbulent characteristics such as turbulent intensities and dimensionless turbulent energy. The main characteristics of the swirling flow are discussed and the swirl number is estimated as a function of the axial distance from the tangential inlet. Received: 6 July 1998/Accepted: 20 March 1999  相似文献   

18.
Experimental study of an impinging jet with different swirl rates   总被引:1,自引:0,他引:1  
A stereo PIV technique using advanced pre- and post-processing algorithms is implemented for the experimental study of the local structure of turbulent swirling impinging jets. The main emphasis of the present work is the analysis of the influence of swirl rate on the flow structure. During measurements, the Reynolds number was 8900, the nozzle-to-plate distance was equal to three nozzle diameters and the swirl rate was varied from 0 to 1.0. For the studied flows, spatial distributions of the mean velocity and statistical moments (including triple moments) of turbulent pulsations were measured.

The influence of the PIV finite spatial resolution on the measured dissipation rate and velocity moments was analyzed and compared with theoretical predictions. For this purpose, a special series of 2D PIV measurements was carried out with vector spacing up to several Kolmogorov lengthscales.

All terms of the axial mean momentum and the turbulent kinetic energy budget equations were obtained for the cross-section located one nozzle diameter from the impinging plate. For the TKE budget, the dissipation term was directly calculated from the instantaneous velocity fields, thereby allowing the pressure diffusion term to be found as a residual one. It was found that the magnitude of pressure diffusion decreased with the growth of the swirl rate. In general, the studied swirling impinging jets had a greater spread rate and a more rapid decay in absolute velocity when compared to the non-swirling jet.  相似文献   


19.
Three different methods to introduce turbulence in the computational domain of Direct Numerical Simulations (DNS) of statistically planar turbulent premixed flame configurations have been reviewed and their advantages and disadvantages in terms of run time, natural flame development, control of turbulence parameters and convergence of statistics extracted from the simulations have been discussed in detail. It has been found that there is no method, which is clearly superior to the other two alternative methods. An analysis has been performed to explain why Lundgren’s physical space linear forcing results in an integral length scale which is, independent of the Reynolds number, a constant fraction of the domain size. Furthermore, an evolution equation for the integral length scale has been derived, and a scaling analysis of its terms has been performed to explain the evolution of the integral length scale in the context of Lundgren’s physical space linear forcing. Finally, a modification to Lundgren’s forcing approach has been suggested which ensures that the integral length scale settles to a predetermined value so that DNS of statistically planar turbulent premixed flames with physical space forcing can be conducted for prescribed values of Damköhler and Karlovitz numbers.  相似文献   

20.
The turbulent velocity field over the rib-roughened wall of an orthogonally rotating channel is investigated by means of two-dimensional particle image velocimetry (PIV). The flow direction is outward, with a bulk Reynolds number of 1.5 × 104 and a rotation number ranging from 0.3 to 0.38. The measurements are obtained along the wall-normal/streamwise plane at mid-span. The PIV system rotates with the channel, allowing to measure directly the relative flow velocity with high spatial resolution. Coriolis forces affect the stability of the boundary layer and free shear layer. Due to the different levels of shear layer entrainment, the reattachment point is moved downstream (upstream) under stabilizing (destabilizing) rotation, with respect to the stationary case. Further increase in rotation number pushes further the reattachment point in stabilizing rotation, but does not change the recirculation length in destabilizing rotation. Turbulent activity is inhibited along the leading wall, both in the boundary layer and in the separated shear layer; the opposite is true along the trailing wall. Coriolis forces affect indirectly the production of turbulent kinetic energy via the Reynolds shear stresses and the mean shear. Two-point correlation is used to characterize the coherent motion of the separated shear layer. Destabilizing rotation is found to promote large-scale coherent motions and accordingly leads to larger integral length scales; on the other hand, the spanwise vortices created in the separating shear layer downstream of the rib are less organized and tend to be disrupted by the three-dimensional turbulence promoted by the rotation. The latter observation is consistent with the distributions of span-wise vortices detected in instantaneous flow realizations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号