首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of several nano‐sized ceria, CeO2, systems was investigated using neutron and X‐ray diffraction and X‐ray absorption spectroscopy. Whilst both diffraction and total pair distribution functions (PDFs) revealed that in all of the samples the occupancy of both Ce4+ and O2? are very close to the ideal stoichiometry, the analysis using Reverse Monte Carlo technique revealed significant disorder around oxygen atoms in the nano‐sized ceria samples in comparison to the highly crystalline NIST standard. In addition, the analysis revealed that the main differences observed in the pair correlations from various X‐ray and neutron diffraction techniques were attributable to the particle size of the CeO2 prepared by the reported three methods. Furthermore, detailed analysis of the Ce L3‐ and K‐edge EXAFS data support this finding; in particular the decrease in higher shell coordination numbers with respect to the NIST standard, is attributed to differences in particle size.  相似文献   

2.
We report the structural, thermal, optical, and redox properties of Fe‐doped cerium oxide (CeO2) nanoparticles, obtained using the polyol‐co‐precipitation process. X‐ray diffraction data reveal the formation of single‐phase structurally isomorphous CeO2. The presence of Fe3+ may act as electron acceptor and/or hole donor, facilitating longer lived charge carrier separation in Fe‐doped CeO2 nanoparticles as confirmed by optical band gap energy. The increased content of localized defect states in the ceria gap and corresponding shift of the optical absorption edge towards visible range in Fe‐doped samples can significantly improve the optical activity of nanocrystalline ceria. The better‐quality redox performances of the Fe‐doped CeO2 nanoparticles, compared with undoped CeO2 nanoparticles, were ascribed mainly to a decrease in band gap energy and an increase in specific surface area of the material. As observed from TPR studies all Fe ‐doped CeO2 nanoparticles, particularly the 10 mol % Fe doped CeO2 nanoproduct, exhibit excellent reduction performance.  相似文献   

3.
Color‐controlled spherical Ag nanoparticles (NPs) and nanorods, with features that originate from their particle sizes and morphologies, can be synthesized within the mesoporous structure of SBA‐15 by the rapid and uniform microwave (MW)‐assisted alcohol reduction method in the absence or presence of surface‐modifying organic ligands. The obtained several Ag catalysts exhibit different catalytic activities in the H2 production from ammonia borane (NH3BH3, AB) under dark conditions, and higher catalytic activity is observed by smaller yellow Ag NPs in spherical form. The catalytic activities are specifically enhanced under the light irradiation for all Ag catalysts. In particular, under light irradiation, the blue Ag nanorod shows a maximum enhancement of more than twice that observed in the dark. It should be noted that the order of increasing catalytic performance is in close agreement with the order of absorption intensity owing to the Ag localized surface plasmon resonance (LSPR) at irradiation light wavelength. Upon consideration of infrared thermal effect, wavelength dependence on catalytic activity, and effect of radical scavengers, it can be concluded that the dehydrogenation of AB is promoted by change of charge density of the Ag NP surface derived from LSPR. The LSPR‐enhanced catalytic activity can be further realized in the tandem reaction consisting of dehydrogenation of AB and hydrogenation of 4‐nitrophenol, in which a similar tendency in the enhancement of catalytic activity is observed.  相似文献   

4.
Water pollution by polychlorinated aromatic hydrocarbons has always been a global issue. In this work, we reported a synthesis of supported palladium catalysts Pd/C, Pd/CeO2, Pd/SBA‐15, Pd/ZrO2,Pd/SiO2, and Pd/Al2O3 as well as their catalytic activities on hydrodechlorination (HDC) of 1,2,4,5‐tetrachlorobenzene (TeCB). These Pd catalysts were characterized by Brunauer‐Emmett‐Teller (BET) specific surface area, Transmission electron microscopy (TEM), X‐ray diffraction (XRD), energy Dispersive X‐ray Fluorescence (EDXRF), CO‐chemisorption, and H2‐temperature programmed reduction (H2‐TPR) analysis. Pd/C, Pd/CeO2 and Pd/SBA‐15 catalysts showed relatively high catalytic activities. The catalytic activities were associated with dispersion of Pd, metal surface area, and reaction temperature, etc.  相似文献   

5.
This study shows a facile approach for the preparation of CeO2 nanoparticles decorated with porous nitrogen‐doped graphene (NG) nanosheets for effective photocatalytic degradation of methylene blue (MB). NG nanosheets were first synthesized using a hydrothermal method and then nitrogen‐doped graphene‐cerium oxide (NG‐CeO2) was prepared through mixing of cerium nitrate with different concentrations of NG under ultrasonication followed by hydrothermal treatment. The synthesized nanocomposites were characterized using X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FE‐SEM). The photocatalytic activity of the synthesized nanocomposites was analyzed against MB dye. Results showed that the nanocomposites of NG‐CeO2 have an average particle size of 20 nm. The as‐prepared NG‐CeO2 nanocomposites exhibited outstanding photocatalytic activity for dye degradation under visible light irradiation, which could be attributed to synergistic effects between the NG nanosheets and CeO2. The quantum of photodegradation increases with the increase of the NG content in the nanocomposites.  相似文献   

6.
The active species in supported metal catalysts are elusive to identify, and large quantities of inert species can cause significant waste. Herein, using a stoichiometrically precise synthetic method, we prepare atomically dispersed palladium–cerium oxide (Pd1/CeO2) and hexapalladium cluster–cerium oxide (Pd6/CeO2), as confirmed by spherical‐aberration‐corrected transmission electron microscopy and X‐ray absorption fine structure spectroscopy. For aerobic alcohol oxidation, Pd1/CeO2 shows extremely high catalytic activity with a TOF of 6739 h?1 and satisfactory selectivity (almost 100 % for benzaldehyde), while Pd6/CeO2 is inactive, indicating that the true active species are single Pd atoms. Theoretical simulations reveal that the bulkier Pd6 clusters hinder the interactions between hydroxy groups and the CeO2 surface, thus suppressing synergy of Pd‐Ce perimeter.  相似文献   

7.
Ag nanoparticles grown on reduced CeO2-x thin films have been studied by X-ray photoelec-tron spectroscopy and resonant photoelectron spectroscopy of the valence band to understand the effect of oxygen vacancies in the CeO2-x thin films on the growth and interfacial elec-tronic properties of Ag. Ag grows as three-dimensional particles on the CeO2-x(111) surface at 300 K. Compared to the fully oxidized ceria substrate surface, Ag favors the growth of smaller particles with a larger particle density on the reduced ceria substrate surface, which can be attributed to the nucleation of Ag on oxygen vacancies. The binding energy of Ag3d increases when the Ag particle size decreases, which is mainly attributed to the final-state screening. The interfacial interaction between Ag and CeO2-x(111) is weak. The resonant enhancement of the 4f level of Ce3+ species in RPES indicates a partial Ce4+→Ce3+ re-duction after Ag deposited on reduced ceria surface. The sintering temperature of Ag on CeO1.85(111) surface during annealing is a little higher than that of Ag on CeO2(111) surface, indicating that Ag nanoparticles are more stable on the reduced ceria surface.  相似文献   

8.
Homogeneously dispersed silver nanoparticles (AgNPs) were successfully decorated onto the surface of TiO2 nanotube arrays (TNTA) by means of an in situ photoreduction method. TNTA films as supports exhibit excellent properties to prevent agglomeration of AgNPs, and they also avoid using polymer ligands, which is deleterious to enhancing the properties of the fabricated NPs. The silver particle size and its content could be controlled just by changing the immersion time. Detailed SEM and TEM analyses combined with energy‐dispersive X‐ray spectroscopy analyses with different immersion times (5, 10, 30, 60 min) have revealed the variation tendency. The prepared Ag/TNTA composite films were also characterized by XRD, X‐ray photoelectron spectroscopy, and high‐resolution TEM. The UV/Vis diffuse reflectance spectra displayed a redshift of the absorption peak with the growth of AgNPs. The photocurrent response and the photoelectrocatalytic degradation of methyl orange (MO) were used to evaluate the photoelectrochemical properties of the fabricated samples. The results showed that the photocurrent response and photoelectrocatalytic activity largely depended on the loaded Ag particle size and content. TNTA films with a diameter of 17.92 nm and silver content of 1.15 at % showed the highest photocurrent response and degradation rate of MO. The enhanced properties could be attributed to the synergistic effect between AgNPs and TiO2. To make good use of this effect, particle size and silver content should be well controlled to develop the electron charge and discharge process during the photoelectrical process. Neither smaller nor larger AgNPs caused decreased photoelectrical properties.  相似文献   

9.
Magnetic mesoporous silica was prepared via embedding magnetite nanoparticles between channels of mesoporous silica (SBA‐15). The prepared composite (Fe3O4@SiO2‐SBA) was then reacted with 3‐chloropropyltriethoxysilane, sodium imidazolide and 2‐bromopyridine to give 3‐(pyridin‐2‐yl)‐1H‐imidazol‐3‐iumpropyl‐functionalized Fe3O4@SiO2‐SBA as a supported pincer ligand for Pd(II). The functionalized magnetic mesoporous silica was further reacted with [PdCl2(SMe2)2] to produce a supported N‐heterocyclic carbene–Pd(II) complex. The obtained catalyst was characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, energy‐dispersive X‐ray analysis, vibrating sample magnetometry, Brunauer–Emmett–Teller surface area measurement and X‐ray diffraction. The amount of the loaded complex was 80.3 mg g?1, as calculated through thermogravimetric analysis. The formation of the ordered mesoporous structure of SBA‐15 was confirmed using low‐angle X‐ray diffraction and transmission electron microscopy. Also, X‐ray photoelectron spectroscopy confirmed the presence of the Pd(II) complex on the magnetic support. The prepared magnetic catalyst was then effectively used in the coupling reaction of olefins with aryl halides, i.e. the Heck reaction, in the presence of a base. The reaction parameters, such as solvent, base, temperature, amount of catalyst and reactant ratio, were optimized by choosing the coupling reaction of 1‐bromonaphthalene and styrene as a model Heck reaction. N‐Methylpyrrolidone as solvent, 0.25 mol% catalyst, K2CO3 as base, reaction temperature of 120°C and ultrasonication of the catalyst for 10 min before use provided the best conditions for the Heck cross‐coupling reaction. The best results were observed for aryl bromides and iodides while aryl chlorides were found to be less reactive. The catalyst exhibited noticeable stability and reusability.  相似文献   

10.
Bismuth (Bi)‐containing SBA‐15 mesoporous silica catalysts, Bi/SBA‐15, with different Bi loadings were synthesized by a direct hydrothermal method. The materials were characterized in detail by various techniques. Powder‐X‐ray‐diffraction (PXRD), N2‐adsorption/desorption, and transmission‐electron‐microscopic (TEM) analyses revealed that the well‐ordered hexagonal structure of SBA‐15 is maintained after Bi incorporation. Diffuse‐reflectance UV/VIS, Raman, and X‐ray photoelectron spectroscopy (XPS) showed that the incorporated Bi‐atoms are highly dispersed, most of them entering the internal surface of SBA‐15. The new, very stable catalysts were found to be highly efficient for the oxidation of cyclohexane in a solvent‐free system, molecular oxygen (O2) being used as oxidant.  相似文献   

11.
Bis(1,5‐cyclooctadiene) nickel [Ni(COD)2] was employed as a nickel precursor to prepare nickel oxide nanoparticles upon high‐surface‐area mesoporous silica. Under protection of argon, Ni(COD)2 was dissolved in tetrahydrofuran (THF) to react with surface silanols of mesoporous silica SBA‐15, which formed a black powder after completion of the surface reaction. Calcination of the powder produced ultrafine NiO inside the mesoporous silica matrix, which was evidenced by X‐ray diffraction, N2 adsorption–desorption, transmission electron microscopy and thermogravimetric analysis. The thermogravimetric analysis suggests that NiO formation is a result of surface nickel species calcination, whereas structural characterization clearly show that NiO nanoparticles of <5 nm are evenly distributed inside the silica SBA‐15 matrix and mesoporosity is well preserved upon calcinations and NiO formation. The surface reaction between Ni(COD)2 and surface silanols was found for the first time, and the method used here may be extended conveniently to prepare other metal oxide nanoparticles upon high‐surface‐area supports as well. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
LI Hui  LIU Jun  YANG Haixia  LI Hexing 《中国化学》2009,27(12):2316-2322
Co‐B amorphous alloy catalysts supported on three kinds of mesoporous silica (common SiO2, MCM‐41 and SBA‐15) have been systematically studied focusing on the effect of pore structure on the catalytic properties in liquid‐phase hydrogenation of cinnamaldehyde to cinnamyl alcohol (CMO). Structural characterization of a series of different catalysts was performed by means of N2 adsorption, X‐ray diffraction, transmission electron microscopy, hydrogen chemisorption, and X‐ray photoelectron spectroscopy. Various characterizations revealed that the pore structure of supports profoundly influenced the particle size, location and dispersion degree of Co‐B amorphous alloys. Co‐B/SBA‐15 was found more active and selective to CMO than either Co‐B/SiO2 or Co‐B/MCM‐41. The superior catalytic activity could be attributed to the higher active surface area, because most of Co‐B nanoparticles in Co‐B/SBA‐15 were located in the ordered pore channels of SBA‐15 rather than on the external surface as found in Co‐B/SiO2 and Co‐B/MCM‐41. Meanwhile, the geometrical confinement effect of the ordered mesoporous structure of SBA‐15 was considered to be responsible for the enhanced selectivity to CMO on Co‐B/SBA‐15, inhibiting the further hydrogenation of CMO to hydrocinnamyl alcohol.  相似文献   

13.
Mesoporous silica SBA‐15 was synthesized and silanized with azidopropyl triethoxysilane in order to design a clickable material. Fourier transform infrared analysis permitted to prove the attachment of the azidopropylene groups to SBA‐15 resulting in the reactive and functional material N3‐SBA‐15. X‐ray photoelectron spectroscopy was used to determine the surface composition of SBA‐15. However, we unexpectedly found that the surface bound azido groups undergo X‐ray induced decomposition during the X‐ray photoelectron spectroscopy analysis resulting in the formation of nitrenes. These are very reactive groups able to intercalate C―C and C―H bonds of the propylene chains as judged from the N1s peak shape. Possible mechanisms of intercalation are suggested. C1s and N1s peaks were recorded at different exposure time. N/C, N+/N and N+/C undergo exponential decay. N+/N reaches the value of zero in less than 80 min of exposure to the X‐ray source. The N+/C decay plot was fitted with first‐order kinetics, and the decomposition kinetic constant (kdec) was found to equal to 516.4 s?1. This is a fast X‐ray induced degradation which must be considered with care when examining clickable materials with surface bound alkyl azido groups. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
《先进技术聚合物》2018,29(4):1322-1333
This work aims to develop novel composites from a poly(L ‐lactide‐co‐trimethylene carbonate‐co‐glycolide) (PLTG) terpolymer and mesoporous silica (SBA‐15) nanofillers surface modified by post‐synthetic functionalization. SBA‐15 first reacts with a silane coupling agent, γ‐aminopropyl‐trimethoxysilane to introduce ammonium group. PLLA chains were then grafted on the surface of SBA‐15 through ammonium initiated ring‐opening polymerization of L ‐lactide. Composites were prepared via solution mixing of PLTG terpolymer and surface modified SBA‐15. The structures and properties of pure SBA‐15, γ‐aminopropyl‐trimethoxysilane modified SBA‐15 (H2N‐SBA‐15), PLLA modified SBA‐15 (PLLA‐NH‐SBA‐15), and PLTG/PLLA‐NH‐SBA‐15 composites were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, transmission electron microscopy, N2 adsorption‐desorption, differential scanning calorimetry, contact angle measurement, and mechanical testing. The results demonstrated that PLLA chains were successfully grafted onto the surface of SBA‐15 with grafting amounts up to 16 wt.%. The PLTG/PLLA‐NH‐SBA‐15 composites exhibit good mechanical properties. The tensile strength, Young's modulus, and elongation at break of the composite containing 5 wt.% of PLLA‐NH‐SBA‐15 were 39.9 MPa, 1.3 GPa, and 273.6%, respectively, which were all higher than those of neat PLTG or of the composite containing 5 wt.% of pure SBA‐15. Cytocompatibility tests showed that the composites present very low cytotoxicity.  相似文献   

15.
Introducing plasmonic metals into semiconductor materials has been proven to be an attractive strategy for enhancing photocatalytic activity in the visible region. In this work, a novel and efficient Ag/Ag2WO4/g‐C3N4 (AACN) ternary plasmonic photocatalyst was successfully synthesized using a facile one‐step in situ hydrothermal method. The composition, structure, morphology and optical absorption properties of AACN were investigated using X‐ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and UV–visible diffuse reflectance spectroscopy, respectively. Photocatalytic performance of AACN was evaluated via rhodamine B and tetracycline degradation. The results indicated that AACN had excellent photocatalytic performance for rhodamine B degradation with a rate constant of 0.0125 min?1, which was higher than those of Ag2WO4 and Ag/Ag2WO4. Characterization and photocatalytic tests showed that the strong coupling effect between the Ag/Ag2WO4 nanoparticles and the exfoliated ultrathin g‐C3N4 nanosheets was superior for visible‐light responsivity and reduced the recombination rate of photogenerated electrons and holes. A proposed mechanism is also discussed according to the band energy structure and the experimental results.  相似文献   

16.
In this work, we compared formation and properties of heat‐treated Ag nanoparticles in silica matrix synthesized by RF‐reactive magnetron cosputtering and sol–gel methods separately. The sol–gel and sputtered films were annealed at different temperatures in air and in a reduced environment, respectively. The optical UV‐visible spectrophotometry have shown that the absorption peak appears at 456 and 400 nm wavelength indicating formation of silver nanoparticles in SiO2 matrix for both the sol–gel and sputtering methods at 100 and 800 °C, respectively. XPS measurements showed that the metallic Ag0 nanoparticles can be obtained from both the techniques at these temperatures. According to XPS and AFM analysis, by increasing annealing temperature, the concentration of the Ag nanoparticles on the surface decreased and the nanoparticles diffused into the substrate for the sol–gel films, while for the films deposited by cosputtering method, the Ag surface concentration increased by increasing the temperature. Based on AFM observations, the size of nanoparticles on the surface were obtained at about 25 and 55 nm for sputtered and sol–gel films, respectively, supporting our optical data analysis. In comparison, the sputtering technique can produce Ag metallic nanoparticles with a narrower particle size distribution relative to the sol–gel method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Noble metal nanoparticles (NPs) with 1–5 nm diameter obtained from NaHB4 reduction possess high catalytic activity. However, they are rarely used directly. This work presents a facile, versatile, and efficient aerosol‐spray approach to deliver noble‐metal NPs into metal oxide supports, while maintaining the size of the NPs and the ability to easily adjust the loading amount. In comparison with the conventional spray approach, the size of the loaded noble‐metal nanoparticles can be significantly decreased. An investigation of the 4‐nitrophenol hydrogenation reaction catalyzed by these materials suggests that the NPs/oxides catalysts have high activity and good endurance. For 1 % Au/CeO2 and Pd/Al2O3 catalysts, the rate constants reach 2.03 and 1.46 min?1, which is much higher than many other reports with the same noble‐metal loading scale. Besides, the thermal stability of catalysts can be significantly enhanced by modifying the supports. Therefore, this work contributes an efficient method as well as some guidance on how to produce highly active and stable supported noble‐metal catalysts.  相似文献   

18.
We use polyoxometalates as precursors for the preparation of heterogeneous catalysts. In the starting molecular precursor [{Ru(C6Me6)}2Mo5O18{Ru(C6Me6)(H2O)}], three ruthenium arene fragments are supported on a formally lacunary Lindqvist‐type polyoxomolybdate. This species was introduced by incipient wetness impregnation into the porosity of a SBA‐15‐type mesoporous silica. The evolution of the system under reducing atmosphere is followed by several methods, such as temperature‐programmed reduction (TPR), Raman, and X‐ray absorption spectroscopy (XAS). The results indicate that the polyoxometalate structure is retained after grafting on silica and allows the stabilization of Ru0 nanoparticles after reduction. The resulting system exhibits interesting catalytic activity in benzene hydrogenation.  相似文献   

19.
A series of Mo‐based catalysts for 1‐butene metathesis to propene were prepared by supporting Mo species on SBA‐15 premodified with alumina. The effects of the method of introduction of the alumina guest to the host SBA‐15 on the location of the Mo species and the corresponding metathesis activity were studied. As revealed by N2 adsorption isotherms and TEM results, well‐dispersed alumina was formed on the pore walls of SBA‐15 if the ammonia/water vapor induced hydrolysis (NIH) method was employed. The Mo species preferentially interacted with alumina instead of SBA‐15, as evidenced by X‐ray photoelectron spectroscopy, time‐of‐flight secondary‐ion mass spectrometry, and IR spectroscopy of adsorbed pyridine. Furthermore, new Brønsted acid sites favorable for the dispersion of the Mo species and low‐temperature metathesis activity were generated as a result of the effective synergy between the alumina and SBA‐15. The Mo/Al2O3@SBA‐15 catalyst prepared by the NIH method showed higher metathesis activity and stability under the conditions of 120 °C, 0.1 MPa, and 1.5 h?1 than catalysts prepared by other methods.  相似文献   

20.
A series of Keggin‐type heteropolyacid‐based heterogeneous catalysts (Co‐/Fe‐/Cu‐POM‐octyl‐NH3‐SBA‐15) were synthesized via immobilized transition metal mono‐ substituted phosphotungstic acids (Co‐/Fe‐/Cu‐POM) on octyl‐amino‐co‐functionalized mesoporous silica SBA‐15 (octyl‐NH2‐SBA‐15). Characterization results indicated that Co‐/Fe‐/Cu‐POM units were highly dispersed in mesochannels of SBA‐15, and both types of Brønsted and Lewis acid sites existed in Co‐/Fe‐/Cu‐POM‐octyl‐NH3‐SBA‐15 catalysts. Co‐POM‐octyl‐NH3‐SBA‐15 catalyst showed excellent catalytic performance in H2O2‐mediated cyclohexene epoxidation with 83.8% of cyclohexene conversion, 92.8% of cyclohexene oxide selectivity, and 98/2 of epoxidation/allylic oxidation selectivity. The order of catalytic activity was Co‐POM‐octyl‐NH3‐SBA‐15 > Fe‐POM‐octyl‐NH3‐SBA‐15 > Cu‐POM‐octyl‐NH3‐SBA‐15. In order to obtain insights into the role of ‐octyl moieties during catalysis, an octyl‐free catalyst (Co‐POM‐NH3‐SBA‐15) was also synthesized. In comparison with Co‐POM‐NH3‐SBA‐15, Co‐POM‐octyl‐NH3‐SBA‐15 showed enhanced catalytic properties (viz. activity and selectivity) in cyclohexene epoxidation. Strong chemical bonding between ‐NH3+ anchored on the surface of SBA‐15 and heteropolyanions resulted in excellent stability of Co‐POM‐octyl‐NH3‐SBA‐15 catalyst, and it could be reused six times without considerable loss of activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号