首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of axial ligands on electron‐transfer and proton‐coupled electron‐transfer reactions of mononuclear nonheme oxoiron(IV) complexes were investigated by using [FeIV(O)(tmc)(X)]n+ ( 1 ‐X) with various axial ligands, in which tmc is 1,4,8,11‐tetramethyl‐1,4,8,11‐tetraazacyclotetradecane and X is CH3CN ( 1 ‐NCCH3), CF3COO? ( 1 ‐OOCCF3), or N3? ( 1 ‐N3), and ferrocene derivatives as electron donors. As the binding strength of the axial ligands increases, the one‐electron reduction potentials of 1 ‐X (Ered, V vs. saturated calomel electrode (SCE)) are more negatively shifted by the binding of the more electron‐donating axial ligands in the order of 1 ‐NCCH3 (0.39) > 1 ‐OOCCF3 (0.13) > 1 ‐N3 (?0.05 V). Rate constants of electron transfer from ferrocene derivatives to 1 ‐X were analyzed in light of the Marcus theory of electron transfer to determine reorganization energies (λ) of electron transfer. The λ values decrease in the order of 1 ‐NCCH3 (2.37) > 1 ‐OOCCF3 (2.12) > 1 ‐N3 (1.97 eV). Thus, the electron‐transfer reduction becomes less favorable thermodynamically but more favorable kinetically with increasing donor ability of the axial ligands. The net effect of the axial ligands is the deceleration of the electron‐transfer rate in the order of 1 ‐NCCH3 > 1 ‐OOCCF3 > 1 ‐N3. In sharp contrast to this, the rates of the proton‐coupled electron‐transfer reactions of 1 ‐X are markedly accelerated in the presence of an acid in the opposite order: 1 ‐NCCH3 < 1 ‐OOCCF3 < 1 ‐N3. Such contrasting effects of the axial ligands on the electron‐transfer and proton‐coupled electron‐transfer reactions of nonheme oxoiron(IV) complexes are discussed in light of the counterintuitive reactivity patterns observed in the oxo transfer and hydrogen‐atom abstraction reactions by nonheme oxoiron(IV) complexes (Sastri et al. Proc. Natl. Acad. Sci. U.S.A. 2007 , 104, 19 181–19 186).  相似文献   

2.
3.
4.
Oxidative single‐electron transfer‐catalyzed tandem reactions consisting of a conjugate addition and a radical cyclization are reported, which incorporate the mandatory terminal oxidant as a functionality into the product.  相似文献   

5.
6.
The smallest catalyst : A new strategy to control chemical synthesis by exposure to low‐energy electrons relies on the electrostatic attraction caused by the soft ionization of one of the reaction partners. This approach was used to induce a reaction between C2H4 and NH3 yielding aminoethane. The reaction resembles a hydroamination except that the electron beam replaces the catalyst used in the organic synthesis.

  相似文献   


7.
The preferential substitution of oxo ligands over alkyl ones of rare‐earth complexes is commonly considered as “impossible” due to the high oxophilicity of metal centers. Now, it has been shown that simply assembling mixed methyl/oxo rare‐earth complexes to a rigid trinuclear cluster framework cannot only enhance the activity of the Ln‐oxo bond, but also protect the highly reactive Ln‐alkyl bond, thus providing a previously unrecognized opportunity to selectively manipulate the oxo ligand in the presence of numerous reactive functionalities. Such trimetallic cluster has proved to be a suitable platform for developing the unprecedented non‐redox rare‐earth‐mediated oxygen atom transfer from ketones to CS2 and PhNCS. Controlled experiments and computational studies shed light on the driving force for these reactions, emphasizing the importance of the sterical accessibility and multimetallic effect of the cluster framework in promoting reversal of reactivity of rare‐earth oxo complexes.  相似文献   

8.
The immobilization of [Rh(cod)OCH3]2 (cod = cycloocta‐1,5‐diene) on mesoporous molecular sieves MCM‐41 provides the first inorganic‐type hybrid catalyst, which affords heterogeneous polymerization of phenylacetylene and its ring‐substituted derivatives, – 2‐fluorophenylacetylene, 4‐fluorophenylacetylene, and 4‐pentylphenylacetylene – into readily isolable high‐molecular‐weight (w from 50 000 to 180 000) substituted polyvinylenes of high cis‐transoid structure. The activity of this catalyst is compared with that of homogeneous catalyst [Rh(cod)OCH3]2.  相似文献   

9.
Electron‐induced reactions in condensed mixtures of ethylene and water lead to the synthesis of ethanol, as shown by post‐irradiation thermal desorption spectrometry (TDS). Interestingly, this synthesis is not only induced by soft electron impact ionization similar to a previously observed electron‐induced hydroamination but also, at low electron energy, by electron attachment to ethylene and a subsequent acid/base reaction with water.  相似文献   

10.
An unprecedented reactivity profile of biochemically relevant R‐benzofuroxan (R=H, Me, Cl), with high structural diversity and molecular complexity on a selective {Ru(acac)2} (acac=acetylacetonate) platform, in conjugation with EtOH solvent mediation, is revealed. This led to the development of monomeric [RuIII(acac)2(L1R)] ( 1 a – 1 c ; L1R=2‐nitrosoanilido derivatives) and dimeric [{RuII(acac)2}2(L2R)] ( 2 a – 2 b ; L2R=(1E,2E)‐N1,N2‐bis(2‐nitrosophenyl)ethane‐1,2‐diimine derivatives) complexes in one pot with a change in the metal redox conditions. The functionalization of benzofuroxan in 1 and 2 implied in situ reduction of N=O to NH? in the former and solvent‐assisted multiple N?C coupling in the latter. The aforesaid transformation processes were authenticated through structural elucidation of representative complexes, and evaluated by their spectroscopic/electrochemical features, along with C2D5OD labeling and monitoring of the impact of substituents (R) in the benzofuroxan framework on the product distribution process. The noninnocent potential of newly developed L1 and L2 in 1 and 2 , respectively, was also probed by spectroelectrochemistry in combination with DFT calculations.  相似文献   

11.
Fluoroalkylsulfonyl chlorides, RfSO2Cl, in which Rf=CF3, C4F9, CF2H, CH2F, and CH2CF3, are used as a source of fluorinated radicals to add fluoroalkyl groups to electron‐deficient, unsaturated carbonyl compounds. Photochemical conditions, using Cu mediation, are used to produce the respective α‐chloro‐β‐fluoroalkylcarbonyl products in excellent yields through an atom transfer radical addition (ATRA) process. Facile nucleophilic replacement of the α‐chloro substituent is shown to lead to further diverse functionalization of the products.  相似文献   

12.
《Chemphyschem》2003,4(5):474-481
Spectroscopic, computational, redox, and photochemical behavior of a self‐assembled donor‐acceptor dyad formed by axial coordination of zinc naphthalocyanine, ZnNc, and fulleropyrrolidine bearing an imidazole coordinating ligand (2‐(4′‐imidazolylphenyl)fulleropyrrolidine, C60Im) was investigated in noncoordinating solvents, toluene and o‐dichlorobenzene, and the results were compared to the intermolecular electron transfer processes in a coordinating solvent, benzonitrile. The optical absorption and ab initio B3 LYP/3–21G(*) computational studies revealed self‐assembled supramolecular 1:1 dyad formation between the ZnNc and C60Im entities. In the optimized structure, the HOMO was found to be entirely located on the ZnNc entity while the LUMO was found to be entirely on the fullerene entity. Cyclic voltammetry studies of the dyad exhibited a total of seven one‐electron redox processes in o‐dichlorobenzene, with 0.1 M tetrabutylammonium perchlorate. The excited‐state electron‐transfer processes were monitored by both optical‐emission and transient‐absorption techniques. Direct evidence for the radical‐ion‐pair (C60Im.?:ZnNc . + ) formation was obtained from picosecond transient‐absorption spectral studies, which indicated charge separation from the singlet‐excited ZnNc to the C60Im moiety. The calculated rates of charge separation and charge recombination were 1.4×1010 s?1 and 5.3×107 s?1 in toluene and 8.9×109 s?1 and 9.2×107 s?1 in o‐dichlorobenzene, respectively. In benzonitrile, intermolecular electron transfer from the excited triplet state of ZnNc to C60Im occurs and the second‐order rate constant (kqtriplet) for this quenching process was 5.3×108 M ?1 s?1.  相似文献   

13.
We present the first [2]rotaxane featuring a functional organometallic host. In contrast to the known organic scaffolds, this assembly shows a high post‐synthetic modifiability. The reactivity of the Ag8 pillarplex host is fully retained, as is exemplified by the first transmetalation in a rotaxane framework to provide the respective Au8 analogue. Additionally, a transformation under acidic conditions to give a purely organic [3]rotaxane is demonstrated which is reversible upon addition of a suitable base, rendering the assembly a pH‐dependent switch. Hereby, it is shown that the mechanically interlocked nature of the system enhances the kinetic stability of the NHC host complex by a factor of >1000 and corresponds to the first observation of a stabilizing “rotaxand effect”.  相似文献   

14.
The title compounds underwent a facile and high‐yielding addition reaction (19 examples, 66–99 % yield) with various N‐(trimethylsilyl)methyl‐substituted amines upon irradiation with visible light and catalysis by a metal complex. If the alkylidene substituent is non‐symmetric and if the reaction is performed in the presence of a chiral hydrogen‐bonding template, products are obtained with significant enantioselectivity (58–72 % ee) as a mixture of diastereoisomers. Mechanistic studies suggest a closed catalytic cycle for the photoactive metal complex. However, the silyl transfer from the amine occurs not only to the product, but also to the substrate, and interferes with the desired chirality transfer.  相似文献   

15.
16.
High yielding syntheses of 1‐(ferrocenylmethyl)‐3‐mesitylimidazolium iodide ( 1 ) and 1‐(ferrocenylmethyl)‐3‐mesitylimidazol‐2‐ylidene ( 2 ) were developed. Complexation of 2 to [{Ir(cod)Cl}2] (cod=cis,cis‐1,5‐cyclooctadiene) or [Ru(PCy3)Cl2(?CH‐o‐O‐iPrC6H4)] (Cy=cyclohexyl) afforded 3 ([Ir( 2 )(cod)Cl]) and 5 ([Ru( 2 )Cl2(?CH‐o‐O‐iPrC6H4)]), respectively. Complex 4 ([Ir( 2 )(CO)2Cl]) was obtained by bubbling carbon monoxide through a solution of 3 in CH2Cl2. Spectroelectrochemical IR analysis of 4 revealed that the oxidation of the ferrocene moiety in 2 significantly reduced the electron‐donating ability of the N‐heterocyclic carbene ligand (ΔTEP=9 cm?1; TEP=Tolman electronic parameter). The oxidation of 5 with [Fe(η5‐C5H4COMe)Cp][BF4] as well as the subsequent reduction of the corresponding product [ 5 ][BF4] with decamethylferrocene (Fc*) each proceeded in greater than 95 % yield. Mössbauer, UV/Vis and EPR spectroscopy analysis confirmed that [ 5 ][BF4] contained a ferrocenium species, indicating that the iron center was selectively oxidized over the ruthenium center. Complexes 5 and [ 5 ][BF4] were found to catalyze the ring‐closing metathesis (RCM) of diethyl diallylmalonate with observed pseudo‐first‐order rate constants (kobs) of 3.1×10?4 and 1.2×10?5 s?1, respectively. By adding suitable oxidants or reductants over the course of a RCM reaction, complex 5 was switched between different states of catalytic activity. A second‐generation N‐heterocyclic carbene that featured a 1′,2′,3′,4′,5′‐ pentamethylferrocenyl moiety ( 10 ) was also prepared and metal complexes containing this ligand were found to undergo iron‐centered oxidations at lower potentials than analogous complexes supported by 2 (0.30–0.36 V vs. 0.56–0.62 V, respectively). Redox switching experiments using [Ru( 10 )Cl2(?CH‐o‐O‐iPrC6H4)] revealed that greater than 94 % of the initial catalytic activity was restored after an oxidation–reduction cycle.  相似文献   

17.
Kinetic and spectroscopic analyses were performed to gain information about the mechanism of atom‐transfer radical reactions catalyzed by the complexes [RuCl2Cp*(PPh3)] and [RuClCp*(PPh3)2] (Cp*=pentamethylcyclopentadienyl), in the presence and in the absence of the reducing agent magnesium. The reactions of styrene with ethyl trichloroacetate, ethyl dichloroacetate, or dichloroacetonitrile were used as test reactions. The results show that for substrates with high intrinsic reactivity, such as ethyl trichloroacetate, the oxidation state of the catalyst in the resting state is +3, and that the reaction is zero‐order with respect to the halogenated compound. Furthermore, the kinetic data suggest that the metal catalyst is not directly involved in the rate‐limiting step of the reaction.  相似文献   

18.
19.
π–π assisted : Photoinduced electron transfer from cofacial porphyrin dimers to electron acceptors is prominently accelerated, whereas the back electron transfer is decelerated, relative to the corresponding porphyrin monomer (see figure).

  相似文献   


20.
Reactivity studies of dicarba[2]ferrocenophanes and also their corresponding ring‐opened oligomers and polymers have been conducted in order to provide mechanistic insight into the processes that occur under the conditions of their thermal ring‐opening polymerisation (ROP) (300 °C). Thermolysis of dicarba[2]ferrocenophane rac‐[Fe(η5‐C5H4)2(CHPh)2] (rac‐ 14 ; 300 °C, 1 h) does not lead to thermal ROP. To investigate this system further, rac‐ 14 was heated in the presence of an excess of cyclopentadienyl anion, to mimic the postulated propagating sites for thermally polymerisable analogues. This afforded acyclic [(η5‐C5H5)Fe(η5‐C5H4)‐CH2Ph] ( 17 ) through cleavage of both a Fe?Cp bond and also the C?C bond derived from the dicarba bridge. Evidence supporting a potential homolytic C?C bond cleavage pathway that occurs in the absence of ring‐strain was provided through thermolysis of an acyclic analogue of rac‐ 14 , namely [(η5‐C5H5)Fe(η5‐C5H4)(CHPh)2‐C5H5] ( 15 ; 300 °C, 1 h), which also afforded ferrocene derivative 17 . This reactivity pathway appears general for post‐ROP species bearing phenyl substituents on adjacent carbons, and consequently was also observed during the thermolysis of linear polyferrocenylethylene [Fe(η5‐C5H4)2(CHPh)2]n ( 16 ; 300 °C, 1 h), which was prepared by photocontrolled ROP of rac‐ 14 at 5 °C. This afforded ferrocene derivative [Fe(η5‐C5H4CH2Ph)2] ( 23 ) through selective cleavage of the ?H(Ph)C?C(Ph)H? bonds in the dicarba linkers. These processes appear to be facilitated by the presence of bulky, radical‐stabilising phenyl substituents on each carbon of the linker, as demonstrated through the contrasting thermal properties of unsubstituted linear trimer [(η5‐C5H5)Fe(η5‐C5H4)(CH2)25‐C5H4)Fe(η5‐C5H4)(CH2)25‐C5H4)Fe(η5‐C5H5)] ( 29 ) with a ?H2C?CH2? spacer, which proved significantly more stable under analogous conditions. Evidence for the radical intermediates formed through C?C bond cleavage was detected through high‐resolution mass spectrometric analysis of co‐thermolysis reactions involving rac‐ 14 and 15 (300 °C, 1 h), which indicated the presence of higher molecular weight species, postulated to be formed through cross‐coupling of these intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号