首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A naphthalenediimide (NDI)‐based conjugated polymer was synthesized by a two‐step direct C‐H arylation sequence. In the first step, two ethylenedioxythiophene units were coupled to NDI by direct arylation. In the second step, the direct arylation polycondensation of the monomer, formed in the first step, with 2,7‐dibromo‐9,9‐dioctylfluorene afforded the corresponding NDI‐based conjugated polymer ( PEDOTNDIF ) with molecular weight of 21,500 in 91% yield. The optical and electrochemical properties of the polymer were evaluated. The polymer showed ambipolar behavior in organic field‐effect transistors (OFETs). The electron mobility of PEDOTNDIF was estimated to be 2.3 × 10?6 cm2 V?1 s?1 using an OFET device with source‐drain (S‐D) Au electrodes. A modified OFET device with S‐D MgAg electrodes increased the electron mobility for PEDOTNDIF to 1.0 × 10?5 cm2 V?1 s?1 due to the more suitable work function of these electrodes, which reduced the injection barrier to the semiconducting polymer. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1401–1407  相似文献   

2.
We report the synthesis, characterization, redox behavior, and n‐channel organic field‐effect (OFET) characteristics of a new class of thieno[3,2‐b]thiophene‐diketopyrrolopyrrole‐based quinoidal small molecules 3 and 4 . Under ambient atmosphere, solution‐processed thin‐film transistors based on 3 and 4 exhibit maximum electron mobilities up to 0.22 and 0.16 cm2 V?1 s?1, respectively, with on‐off current ratios (Ion/Ioff) of more than than 106. Cyclic voltammetry analysis showed that this class of quinoidal derivatives exhibited excellent reversible two‐stage reduction behavior. This property was further investigated by a stepwise reductive titration of 4 , in which sequential reduction to the radical anion and then the dianion were observed.  相似文献   

3.
Two well‐defined alternating π‐conjugated polymers containing a soluble electroactive benzo[1,2‐b:4,5‐b′]difuran (BDF) chromophore, poly(BDF‐(9‐phenylcarbazole)) (PBDFC), and poly(BDF‐benzothiadiazole) (PBDFBTD) were synthesized via Sonogashira copolymerizations. Their optical, electrochemical, and field‐effect charge transport properties were characterized and compared with those of the corresponding homopolymer PBDF and random copolymers of the same overall composition. All these polymers cover broad optical absorption ranges from 250 to 750 nm with narrow optical band gaps of 1.78–2.35 eV. Both PBDF and PBDFBTD show ambipolar redox properties with HOMO levels of ?5.38 and ?5.09 eV, respectively. The field‐effect mobility of holes varies from 2.9 × 10?8 cm2 V?1 s?1 in PBDF to 1.0 × 10?5 cm2 V?1 s?1 in PBDFBTD. Bulk heterojunction solar cell devices were fabricated using the polymers as the electron donor and [6,6]‐phenyl‐C61‐butyric acid methyl ester as the electron acceptor, leading to power conversion efficiencies of 0.24–0.57% under air mass 1.5 illumination (100 mW cm?2). These results indicate that their band gaps, molecular electronic energy levels, charge mobilities, and molecular weights are readily tuned by copolymerizing the BDF core with different π‐conjugated units. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
Four new conjugated copolymers based on the moiety of bis(4‐hexylthiophen‐2‐yl)‐6,7‐diheptyl‐[1,2,5]thiadiazolo[3,4‐g]quinoxaline (BTHTQ) were synthesized and characterized, including poly(6,7‐diheptyl‐4,9‐bis(4‐hexylthiophen‐2‐yl)‐[1,2,5]thiadiazolo[3,4‐g]quinoxaline) (PBTHTQ), poly‐(6,7‐diheptyl‐4,9‐bis(4‐hexylthiophen‐2‐yl)‐[1,2,5]thiadiazolo‐[3,4‐g]quinoxaline‐alt‐2,5‐thiophene) (PTTHTQ), poly(6,7‐diheptyl‐4,9‐bis(4‐hexylthiophen‐2‐yl) [1,2,5]‐thiadiazolo‐[3,4‐g]quinoxaline‐alt‐9,9‐dioctyl‐2,7‐fluore‐ne) (PFBTHTQ), and poly(6,7‐diheptyl‐4,9‐bis(4‐hexylthiophen‐2‐yl)‐[1,2,5]thiadiazolo[3,4‐g]quinoxaline‐alt‐1,4‐bis(decyloxy)phenylene) (PPBTHTQ). The λmax of PBTHTQ, PTTHTQ, PFBTHTQ, and PPBTHTP thin films was shown at 780, 876, 734, and 710 nm, respectively, with the corresponding optical band gaps (E) of 1.31, 1.05, 1.40, and 1.43 eV. The relatively small band gaps of the synthesized polymers suggested the significance of intramolecular charge transfer between the donor and TQ moiety. The estimated hole mobilities of PBTHTQ, PTTHTQ, and PFBTHTQ‐based field effect transistor devices using CHCl3 solvent were 8.5 × 10?5, 8.5 × 10?4, and 2.8 × 10?5 cm2 V?1 s?1, respectively, but significantly enhanced to 1.6 × 10?4, 3.8 × 10?3, and 1.5 × 10?4 cm2 V?1 s?1 using high boiling point solvent of chlorobenzene (CB). The higher hole mobility of PTTHTQ than the other two copolymers was attributed from its smaller band gap or ordered morphology [wormlike (chloroform) or needle‐like (CB)]. The characteristics of small band gap and high mobility suggest the potential applications of the BTHTQ‐based conjugated copolymers in electronic and optoelectronic devices. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6305–6316, 2008  相似文献   

5.
A series of unsymmetrical naphthalene imide derivatives ( 1a , 1b , 2 , 3 , 4 , 5 ) with high electron affinity was synthesized and used in n‐channel organic field‐effect transistors (OFETs). They have very good solubility in common organic solvents and good thermal stability up to 320 °C. Their photophysical, electrochemical, and thermal properties were investigated in detail. They showed low‐lying LUMO energy levels from ?3.90 to ?4.15 eV owing to a strong electron‐withdrawing character. Solution‐processed thin‐film OFETs based on 1a , 1b , 2 , 3 , 4 were measured in both N2 and air. They all showed n‐type FET behavior. The liquid‐crystalline compounds 1a , 1b , and 3 showed good performance owing to the self‐healing properties of the film in the liquid‐crystal phase. Compound 3 has an electron mobility of up to 0.016 cm2 V?1 s?1 and current on/off ratios of 104–105.  相似文献   

6.
Two small molecules named BT‐TPD and TBDT‐TTPD with a thieno[3,4‐c]pyrrole‐4,6‐dione (TPD) unit were designed and synthesized for solution‐processed bulk‐heterojunction solar cells. Their thermal, electrochemical, optical, charge‐transport, and photovoltaic characteristics were investigated. These compounds exhibit strong absorption at 460–560 nm and low highest occupied molecular orbital levels (?5.36 eV). Field‐effect hole mobilities of these compounds are 1.7–7.7×10?3 cm2 V?1 s?1. Small‐molecule organic solar cells based on blends of these donor molecules and a acceptor display power conversion efficiencies as high as 4.62 % under the illumination of AM 1.5G, 100 mW cm?2.  相似文献   

7.
Two diketopyrrolopyrrole (DPP)‐based donor–acceptor (D–A) conjugated molecules, DPP‐F and DPP‐2F, which contain E‐(1,2‐difluorovinyl) moieties, are reported. The LUMO energies of DPP‐F and DPP‐2F were estimated to be ?3.49 and ?3.70 eV, respectively, based on their redox potentials and absorption spectral data; these values were clearly lowered because of the incorporation of electron‐withdrawing E‐(1,2‐difluorovinyl) moieties. Organic field‐effect transistors (OFETs) with thin films of DPP‐F and DPP‐2F were successfully fabricated with conventional techniques. Based on the respective transfer and output characteristics measured in an inert atmosphere, thin films of DPP‐2F display ambipolar semiconducting behavior with hole and electron mobilities reaching 0.42 and 0.80 cm2 V?1 s?1, respectively. The as‐prepared OFET of DPP‐2F already shows high hole and electron mobilities that are not influenced remarkably by thermal annealing. For thin films of DPP‐F, only p‐type semiconducting behavior was observed in both an inert atmosphere and air, and the hole mobility increased to 0.1 cm2 V?1 s?1 after thermal annealing. XRD and AFM studies were performed with thin films of DPP‐F and DPP‐2F after annealing at different temperatures.  相似文献   

8.
Two alcohol‐soluble electron‐transport materials (ETMs), diphenyl(4‐(1‐phenyl‐1H‐benzo[d]imidazol‐2‐yl)phenyl)phosphine oxide (pPBIPO) and (3,5‐bis(1‐phenyl‐1H‐benzo[d]imidazol‐2‐yl)phenyl)diphenylphosphine oxide (mBPBIPO), have been synthesized. The physical properties of these ETMs were investigated and they both exhibited high electron‐transport mobilities (1.67×10?4 and 2.15×10?4 cm2 V?1 s?1), high glass‐transition temperatures (81 and 110 °C), and low LUMO energy levels (?2.87 and ?2.82 eV, respectively). The solubility of PBIPO in n‐butyl alcohol was more than 20 mg mL?1, which meets the requirement for fully solution‐processed organic light‐emitting diodes (OLEDs). Fully solution‐processed green‐phosphorescent OLEDs were fabricated by using alcohol‐soluble PBIPO as electron‐transport layers (ETLs), and they exhibited high current efficiencies, power efficiencies, and external quantum efficiencies of up to 38.43 cd A?1, 26.64 lm W?1, and 10.87 %, respectively. Compared with devices that did not contain PBIPO as an ETM, the performance of these devices was much improved, which indicated the excellent electron‐transport properties of PBIPO.  相似文献   

9.
A series of 46 3‐phenyloctahydropyrimido[1,2‐a]‐s–triazine derivatives were synthesized. This synthesis was performed via iminodimethylation of dialkylated 2‐aminopyrimidinedione synthons by substituted primary arylamines. In vitro pharmacological evaluation of these compounds is reported. One of them exhibited antifungal activity against Microsporum canis (10?65010?5 mol/L), and another showed affinity for serotoninergic 5‐HT1A and 5‐HT2b receptors (10?85010?7 mol/L).  相似文献   

10.
A set of three donor‐acceptor conjugated (D‐A) copolymers were designed and synthesized via Stille cross‐coupling reactions with the aim of modulating the optical and electronic properties of a newly emerged naphtho[1,2‐b:5,6‐b′]dithiophene donor unit for polymer solar cell (PSCs) applications. The PTNDTT‐BT , PTNDTT‐BTz , and PTNDTT‐DPP polymers incorporated naphtho[1,2‐b:5,6‐b′]dithiophene ( NDT ) as the donor and 2,2′‐bithiazole ( BTz ), benzo[1,2,5]thiadiazole ( BT ), and pyrrolo[3,4‐c]pyrrole‐1,4(2H,5H)‐dione ( DPP ), as the acceptor units. A number of experimental techniques such as differential scanning calorimetry, thermogravimetry, UV–vis absorption spectroscopy, cyclic voltammetry, X‐ray diffraction, and atomic force microscopy were used to determine the thermal, optical, electrochemical, and morphological properties of the copolymers. By introducing acceptors of varying electron withdrawing strengths, the optical band gaps of these copolymers were effectively tuned between 1.58 and 1.9 eV and their HOMO and LUMO energy levels were varied between ?5.14 to ?5.26 eV and ?3.13 to ?3.5 eV, respectively. The spin‐coated polymer thin film exhibited p‐channel field‐effect transistor properties with hole mobilities of 2.73 × 10?3 to 7.9 × 10?5 cm2 V?1 s?1. Initial bulk‐heterojunction PSCs fabricated using the copolymers as electron donor materials and [6,6]‐phenyl C71 butyric acid methyl ester (PC71BM) as the acceptor resulted in power conversion efficiencies in the range of 0.67–1.67%. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2948–2958  相似文献   

11.
Azulene is a promising candidate for constructing optoelectronic materials. An effective strategy is presented to obtain high‐performance conjugated polymers by incorporating 2,6‐connected azulene units into the polymeric backbone, and two conjugated copolymers P(TBAzDI‐TPD) and P(TBAzDI‐TFB) were designed and synthesized based on this strategy. They are the first two examples for 2,6‐connected azulene‐based conjugated polymers and exhibit unipolar n‐type transistor performance with an electron mobility of up to 0.42 cm2 V?1 s?1, which is among the highest values for n‐type polymeric semiconductors in bottom‐gate top‐contact organic field‐effect transistors. Preliminary all‐polymer solar cell devices with P(TBAzDI‐TPD) as the electron acceptor and PTB7‐Th as the electron donor display a power conversion efficiency of 1.82 %.  相似文献   

12.
A series of new energetic salts based on 4‐nitro‐3‐(5‐tetrazole)furoxan (HTNF) has been synthesized. All of the salts have been fully characterized by nuclear magnetic resonance (1H and 13C), infrared (IR) spectroscopy, elemental analysis, and differential scanning calorimetry (DSC). The crystal structures of neutral HTNF ( 3 ) and its ammonium ( 4 ) and N‐carbamoylguanidinium salts ( 9 ) have been determined by single‐crystal X‐ray diffraction analysis. The densities of 3 and its nine salts were found to range from 1.63 to 1.84 g cm?3. Impact sensitivities have been determined by hammer tests, and the results ranged from 2 J (very sensitive) to >40 J (insensitive). Theoretical performance calculations (Gaussian 03 and EXPLO 5.05) provided detonation pressures and velocities for the ionic compounds 4 – 12 in the ranges 25.5–36.2 GPa and 7934–8919 m s?1, respectively, which make them competitive energetic materials.  相似文献   

13.
Poly((2‐Alkylbenzo[1,2,3]triazole‐4,7‐diyl)vinylene)s (pBTzVs) synthesized by Stille coupling show different absorption spectra, solid‐state morphology, and photovoltaic performance, depending on straight‐chain versus branched‐chain (pBTzV12 and pBTzV20) pendant substitution. Periodic boundary condition density functional computations show limited alkyl pendant effects on isolated chain electronic properties; however, pendants could influence polymer backbone conjugative planarity and polymer solid film packing. The polymers are electronically ambipolar, with best performance by pBTzV12 with hole and electron transport mobilities of 4.86 × 10?6 and 1.96 × 10?6 cm2 V?1 s?1, respectively. pBTzV12 gives a smooth film morphology, whereas pBTzV20 gives a very different fibrillar morphology. For ITO/PEDOT:PSS/(1:1 w/w polymer:PC71BM)/LiF/Al devices, pBTzV12 gives power conversion efficiency (PCE) up to 2.87%, and pBTzV20 gives up to PCE = 1.40%; both have open‐circuit voltages of VOC = 0.6–0.7 V. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1539–1545  相似文献   

14.
Electronic conductivity of molecular wires is a critical fundamental issue in molecular electronics. π‐Conjugated redox molecular wires with the superior long‐range electron‐transport ability could be constructed on a gold surface through the stepwise ligand–metal coordination method. The βd value, indicating the degree of decrease in the electron‐transfer rate constant with distance along the molecular wire between the electrode and the redox active species at the terminal of the wire, were 0.008–0.07 Å?1 and 0.002–0.004 Å?1 for molecular wires of bis(terpyridine)iron and bis(terpyridine)cobalt complex oligomers, respectively. The influences on βd by the chemical structure of molecular wires and the terminal redox units, temperature, electric field, and electrolyte concentration were clarified. The results indicate that facile sequential electron hopping between neighboring metal–complex units within the wire is responsible for the high electron‐transport ability.  相似文献   

15.
We have designed an ambipolar material, 3,7‐bis[4‐(N‐carbazolyl)‐phenyl]‐2,6‐diphenylbenzo[1,2‐b:4,5‐b′]difuran (CZBDF), and synthesized it by zinc‐mediated double cyclization. Its physical properties clarified that CZBDF possesses a wide‐gap character, well‐balanced and high hole and electron mobilities of larger than 10?3 cm2 V?1 s?1, and a high thermal stability. Using CZBDF as a host material for heterojunction OLED devices, a full range of visible emission was obtained. Notably, CZBDF also enabled us to fabricate RGB‐emitting homojunction OLEDs, with performances comparable or superior to the heterojunction devices composed of several materials.  相似文献   

16.
The molecular structure of the hydrocarbon 5,6;11,12‐di‐o‐phenylenetetracene (DOPT), its material characterization and evaluation of electronic properties is reported for the first time. A single‐crystal X‐ray study reveals two different motifs of intramolecular overlap with herringbone‐type arrangement displaying either face‐to‐edge or co‐facial face‐to‐face packing depicting intensive π–π interactions. Density functional theory (DFT) calculations underpin that a favorable electronic transport mechanism occurs by a charge hopping process due to a π‐bond overlap in the DOPT polymorph with co‐facial arene orientation. The performance of polycrystalline DOPT films as active organic semiconducting layer in a state‐of‐the‐art organic field effect transistor (OFET) device was evaluated and proves to be film thickness dependent. For 40 nm layer thickness it displays a saturation hole mobility (μhole) of up to 0.01 cm2 V?1 s?1 and an on/off‐ratio (Ion/Ioff) of 1.5×103.  相似文献   

17.
The gas‐phase elimination kinetics of the above‐mentioned compounds were determined in a static reaction system over the temperature range of 369–450.3°C and pressure range of 29–103.5 Torr. The reactions are homogeneous, unimolecular, and obey a first‐order rate law. The rate coefficients are given by the following Arrhenius expressions: ethyl 3‐(piperidin‐1‐yl) propionate, log k1(s?1) = (12.79 ± 0.16) ? (199.7 ± 2.0) kJ mol?1 (2.303 RT)?1; ethyl 1‐methylpiperidine‐3‐carboxylate, log k1(s?1) = (13.07 ± 0.12)–(212.8 ± 1.6) kJ mol?1 (2.303 RT)?1; ethyl piperidine‐3‐carboxylate, log k1(s?1) = (13.12 ± 0.13) ? (210.4 ± 1.7) kJ mol?1 (2.303 RT)?1; and 3‐piperidine carboxylic acid, log k1(s?1) = (14.24 ± 0.17) ? (234.4 ± 2.2) kJ mol?1 (2.303 RT)?1. The first step of decomposition of these esters is the formation of the corresponding carboxylic acids and ethylene through a concerted six‐membered cyclic transition state type of mechanism. The intermediate β‐amino acids decarboxylate as the α‐amino acids but in terms of a semipolar six‐membered cyclic transition state mechanism. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 38: 106–114, 2006  相似文献   

18.
Two new electron‐rich molecules based on 3,4‐phenylenedioxythiophene (PheDOT) were synthesized and successfully adopted as hole‐transporting materials (HTMs) in perovskite solar cells (PSCs). X‐ray diffraction, absorption spectra, photoluminescence spectra, electrochemical properties, thermal stabilities, hole mobilities, conductivities, and photovoltaic parameters of PSCs based on these two HTMs were compared with each other. By introducing methoxy substituents into the main skeleton, the energy levels of PheDOT‐core HTM were tuned to match with the perovskite, and its hole mobility was also improved (1.33×10?4 cm2 V?1 s?1, being higher than that of spiro‐OMeTAD, 2.34×10?5 cm2 V?1 s?1). The PSC based on MeO‐PheDOT as HTM exhibits a short‐circuit current density (Jsc) of 18.31 mA cm?2, an open‐circuit potential (Voc) of 0.914 V, and a fill factor (FF) of 0.636, yielding an encouraging power conversion efficiency (PCE) of 10.64 % under AM 1.5G illumination. These results give some insight into how the molecular structures of HTMs affect their performances and pave the way for developing high‐efficiency and low‐cost HTMs for PSCs.  相似文献   

19.
Bis(4‐nitraminofurazanyl‐3‐azoxy)azofurazan ( 1 ) and ten of its energetic salts were prepared and fully characterized. Computational analysis based on isochemical shielding surface and trigger bond dissociation enthalpy provide a better understanding of the thermal stabilities for nitramine‐furazans. These energetic compounds exhibit good densities, high heats of formation, and excellent detonation velocity and pressure. Some representative compounds, for example, 1 (vD: 9541 m s?1; P: 40.5 GPa), and 4 (vD: 9256 m s?1; P: 38.0 GPa) exhibit excellent detonation performances, which are comparable with current high explosives such as RDX (vD: 8724 m s?1; P: 35.2 GPa) and HMX (vD: 9059 m s?1; P: 39.2 GPa).  相似文献   

20.
The rate constants of the gas‐phase reaction of OH radicals with trans‐2‐hexenal, trans‐2‐octenal, and trans‐2‐nonenal were determined at 298 ± 2 K and atmospheric pressure using the relative rate technique. Two reference compounds were selected for each rate constant determination. The relative rates of OH + trans‐2‐hexenal versus OH + 2‐methyl‐2‐butene and β‐pinene were 0.452 ± 0.054 and 0.530 ± 0.036, respectively. These results yielded an average rate constant for OH + trans‐2‐hexenal of (39.3 ± 1.7) × 10?12 cm3 molecule?1 s?1. The relative rates of OH+trans‐2‐octenal versus the OH reaction with butanal and β‐pinene were 1.65 ± 0.08 and 0.527 ± 0.032, yielding an average rate constant for OH + trans‐2‐octenal of (40.5 ± 2.5) × 10?12 cm3 molecule?1 s?1. The relative rates of OH+trans‐2‐nonenal versus OH+ butanal and OH + trans‐2‐hexenal were 1.77 ± 0.08 and 1.09 ± 0.06, resulting in an average rate constant for OH + trans‐2‐nonenal of (43.5 ± 3.0) × 10?12 cm3 molecule?1 s?1. In all cases, the errors represent 2σ (95% confidential level) and the calculated rate constants do not include the error associated with the rate constant of the OH reaction with the reference compounds. The rate constants for the hydroxyl radical reactions of a series of trans‐2‐aldehydes were compared with the values estimated using the structure activity relationship. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 41: 483–489, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号