首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 98 毫秒
1.
5‐Vinyl‐2′‐deoxyuridine (VdU) is the first reported metabolic probe for cellular DNA synthesis that can be visualized by using an inverse electron demand Diels–Alder reaction with a fluorescent tetrazine. VdU is incorporated by endogenous enzymes into the genomes of replicating cells, where it exhibits reduced genotoxicity compared to 5‐ethynyl‐2′‐deoxyuridine (EdU). The VdU–tetrazine ligation reaction is rapid (k≈0.02 M ?1 s?1) and chemically orthogonal to the alkyne–azide “click” reaction of EdU‐modified DNA. Alkene–tetrazine ligation reactions provide the first alternative to azide–alkyne click reactions for the bioorthogonal chemical labeling of nucleic acids in cells and facilitate time‐resolved, multicolor labeling of DNA synthesis.  相似文献   

2.
Recently, metabolic glycoengineering with bioorthogonal click reactions has focused on improving the tumor targeting efficiency of nanoparticles as delivery vehicles for anticancer drugs or imaging agents. It is the key technique for developing tumor‐specific metabolic precursors that can generate unnatural glycans on the tumor‐cell surface. A cathepsin B‐specific cleavable substrate (KGRR) conjugated with triacetylated N‐azidoacetyl‐d ‐mannosamine (RR‐S‐Ac3ManNAz) was developed to enable tumor cells to generate unnatural glycans that contain azide groups. The generation of azide groups on the tumor cell surface was exogenously and specifically controlled by the amount of RR‐S‐Ac3ManNAz that was fed to target tumor cells. Moreover, unnatural glycans on the tumor cell surface were conjugated with near infrared fluorescence (NIRF) dye‐labeled molecules by a bioorthogonal click reaction in cell cultures and in tumor‐bearing mice. Therefore, our RR‐S‐Ac3ManNAz is promising for research in tumor‐specific imaging or drug delivery.  相似文献   

3.
Live cell imaging of protein‐specific glycoforms is important for the elucidation of glycosylation mechanisms and identification of disease states. The currently used metabolic oligosaccharide engineering (MOE) technology permits routinely global chemical remodeling (GCM) for carbohydrate site of interest, but can exert unnecessary whole‐cell scale perturbation and generate unpredictable metabolic efficiency issue. A localized chemical remodeling (LCM) strategy for efficient and reliable access to protein‐specific glycoform information is reported. The proof‐of‐concept protocol developed for MUC1‐specific terminal galactose/N ‐acetylgalactosamine (Gal/GalNAc) combines affinity binding, off‐on switchable catalytic activity, and proximity catalysis to create a reactive handle for bioorthogonal labeling and imaging. Noteworthy assay features associated with LCM as compared with MOE include minimum target cell perturbation, short reaction timeframe, effectiveness as a molecular ruler, and quantitative analysis capability.  相似文献   

4.
Dynamic turnover of cell‐surface glycans is involved in a myriad of biological events, making this process an attractive target for in vivo molecular imaging. Metabolic glycan labeling coupled with bioorthogonal chemistry has paved the way for visualizing glycans in living organisms. However, a two‐step labeling sequence is required, which suffers from the tissue‐penetration difficulties of the imaging probes. Here, by exploring the substrate promiscuity of endogenous glycosyltransferases, we developed a single‐step fluorescent glycan labeling strategy by using fluorophore‐tagged analogues of the nucleotide sugars. Injecting fluorophore‐tagged sialic acid and fucose into the yolk of zebrafish embryos at the one‐cell stage enables systematic imaging of sialylation and fucosylation in live zebrafish embryos at distinct developmental stages. From these studies, we obtained insights into the role of sialylated and fucosylated glycans in zebrafish hematopoiesis.  相似文献   

5.
In metabolic glycoengineering (MGE), cells or animals are treated with unnatural derivatives of monosaccharides. After entering the cytosol, these sugar analogues are metabolized and subsequently expressed on newly synthesized glycoconjugates. The feasibility of MGE was first discovered for sialylated glycans, by using N‐acyl‐modified mannosamines as precursor molecules for unnatural sialic acids. Prerequisite is the promiscuity of the enzymes of the Roseman–Warren biosynthetic pathway. These enzymes were shown to tolerate specific modifications of the N‐acyl side chain of mannosamine analogues, for example, elongation by one or more methylene groups (aliphatic modifications) or by insertion of reactive groups (bioorthogonal modifications). Unnatural sialic acids are incorporated into glycoconjugates of cells and organs. MGE has intriguing biological consequences for treated cells (aliphatic MGE) and offers the opportunity to visualize the topography and dynamics of sialylated glycans in vitro, ex vivo, and in vivo (bioorthogonal MGE).  相似文献   

6.
We herein report a chemical decaging strategy for the in situ generation of neuramic acid (Neu), a unique type of sialic acid, on live cells by the use of a palladium‐mediated bioorthogonal elimination reaction. Palladium nanoparticles (Pd NPs) were found to be a highly efficient and biocompatible depropargylation catalyst for the direct conversion of metabolically incorporated N‐(propargyloxycarbonyl)neuramic acid (Neu5Proc) into Neu on cell‐surface glycans. This conversion chemically mimics the enzymatic de‐N‐acetylation of N‐acetylneuramic acid (Neu5Ac), a proposed mechanism for the natural occurrence of Neu on cell‐surface glycans. The bioorthogonal elimination was also exploited for the manipulation of cell‐surface charge by unmasking the free amine at C5 to neutralize the negatively charged carboxyl group at C1 of sialic acids.  相似文献   

7.
Much of the physiology of cells is controlled by the spatial organization of the plasma membrane and the glycosylation patterns of its components, however, studying the distribution, size, and composition of these components remains challenging. A bioorthogonal chemical reporter strategy was used for the efficient and specific labeling of membrane‐associated glycoconjugates with modified monosaccharide precursors and organic fluorophores. Super‐resolution fluorescence imaging was used to visualize plasma membrane glycans with single‐molecule sensitivity. Our results demonstrate a homogeneous distribution of N‐acetylmannosamine (ManNAc)‐, N‐acetylgalactosamine (GalNAc)‐, and O‐linked N‐acetylglucosamine (O‐GlcNAc)‐modified plasma membrane proteins in different cell lines with densities of several million glycans on each cell surface.  相似文献   

8.
Bioorthogonal reactions are widely used for the chemical modification of biomolecules. The application of vinylboronic acids (VBAs) as non‐strained, synthetically accessible and water‐soluble reaction partners in a bioorthogonal inverse electron‐demand Diels–Alder (iEDDA) reaction with 3,6‐dipyridyl‐s‐tetrazines is described. Depending on the substituents, VBA derivatives give second‐order rate constants up to 27 m −1 s−1 in aqueous environments at room temperature, which is suitable for biological labeling applications. The VBAs are shown to be biocompatible, non‐toxic, and highly stable in aqueous media and cell lysate. Furthermore, VBAs can be used orthogonally to the strain‐promoted alkyne–azide cycloaddition for protein modification, making them attractive complements to the bioorthogonal molecular toolbox.  相似文献   

9.
Live cell imaging of protein-specific glycoforms is important for the elucidation of glycosylation mechanisms and identification of disease states. The currently used metabolic oligosaccharide engineering (MOE) technology permits routinely global chemical remodeling (GCM) for carbohydrate site of interest, but can exert unnecessary whole-cell scale perturbation and generate unpredictable metabolic efficiency issue. A localized chemical remodeling (LCM) strategy for efficient and reliable access to protein-specific glycoform information is reported. The proof-of-concept protocol developed for MUC1-specific terminal galactose/N-acetylgalactosamine (Gal/GalNAc) combines affinity binding, off-on switchable catalytic activity, and proximity catalysis to create a reactive handle for bioorthogonal labeling and imaging. Noteworthy assay features associated with LCM as compared with MOE include minimum target cell perturbation, short reaction timeframe, effectiveness as a molecular ruler, and quantitative analysis capability.  相似文献   

10.
Bioorthogonal reactions are widely used for the chemical modification of biomolecules. The application of vinylboronic acids (VBAs) as non‐strained, synthetically accessible and water‐soluble reaction partners in a bioorthogonal inverse electron‐demand Diels–Alder (iEDDA) reaction with 3,6‐dipyridyl‐s‐tetrazines is described. Depending on the substituents, VBA derivatives give second‐order rate constants up to 27 m ?1 s?1 in aqueous environments at room temperature, which is suitable for biological labeling applications. The VBAs are shown to be biocompatible, non‐toxic, and highly stable in aqueous media and cell lysate. Furthermore, VBAs can be used orthogonally to the strain‐promoted alkyne–azide cycloaddition for protein modification, making them attractive complements to the bioorthogonal molecular toolbox.  相似文献   

11.
The targeting of metabolically labeled glycans with conventional MRI contrast agents has proved elusive. In this work, which further expands the utility of xenon Hyper‐CEST biosensors in cell experiments, we present the first successful molecular imaging of such glycans using MRI. Xenon Hyper‐CEST biosensors are a novel class of MRI contrast agents with very high sensitivity. We designed a multimodal biosensor for both fluorescent and xenon MRI detection that is targeted to metabolically labeled sialic acid through bioorthogonal chemistry. Through the use of a state of the art live‐cell bioreactor, it was demonstrated that xenon MRI biosensors can be used to image cell‐surface glycans at nanomolar concentrations.  相似文献   

12.
The N‐acylsulfonamide group, known as a safety‐catch linker, has been applied to photoaffinity labeling (PAL) using a cinnamate‐type photocrosslinker to improve the efficiency of PAL‐based target identification. A bioorthogonal sulfo‐click reaction was used to stably link a photocrosslinker unit with N‐acylsulfonamide linkage to produce a photoactivatable probe without any protection. In addition, the crosslinked protein was selectively isolated with a small cinnamate tag via linkage disruption upon N‐alkylation. Furthermore, the tag moiety was photochemically converted to a stable coumarin derivative by losing a water molecule, which is a useful property in MS‐based identification.  相似文献   

13.
Bioorthogonal turn‐on probes have been widely utilized in visualizing various biological processes. Most of the currently available bioorthogonal turn‐on probes are blue or green emissive fluorophores with azide or tetrazine as functional groups. Herein, we present an alternative strategy of designing bioorthogonal turn‐on probes based on red‐emissive fluorogens with aggregation‐induced emission characteristics (AIEgens). The probe is water soluble and non‐fluorescent due to the dissipation of energy through free molecular motion of the AIEgen, but the fluorescence is immediately turned on upon click reaction with azide‐functionalized glycans on cancer cell surface. The fluorescence turn‐on is ascribed to the restriction of molecular motion of AIEgen, which populates the radiative decay channel. Moreover, the AIEgen can generate reactive oxygen species (ROS) upon visible light (λ=400–700 nm) irradiation, demonstrating its dual role as an imaging and phototherapeutic agent.  相似文献   

14.
Sialylated glycans are found at elevated levels in many types of cancer and have been implicated in disease progression. However, the specific glycoproteins that contribute to the cancer cell‐surface sialylation are not well characterized, specifically in bona fide human disease tissue. Metabolic and bioorthogonal labeling methods have previously enabled the enrichment and identification of sialoglycoproteins from cultured cells and model organisms. Herein, we report the first application of this glycoproteomic platform to human tissues cultured ex vivo. Both normal and cancerous prostate tissues were sliced and cultured in the presence of the azide‐functionalized sialic acid biosynthetic precursor Ac4ManNAz. The compound was metabolized to the azidosialic acid and incorporated into cell surface and secreted sialoglycoproteins. Chemical biotinylation followed by enrichment and mass spectrometry led to the identification of glycoproteins that were found at elevated levels or uniquely in cancerous prostate tissue. This work therefore extends the use of bioorthogonal labeling strategies to problems of clinical relevance.  相似文献   

15.
The synthesis of a set of tetrazine‐bearing fluorogenic dyes suitable for intracellular labeling of proteins in live cells is presented. The red excitability and emission properties ensure minimal autofluorescence, while through‐bond energy‐transfer‐based fluorogenicity reduces nonspecific background fluorescence of unreacted dyes. The tetrazine motif efficiently quenches fluorescence of the phenoxazine core, which can be selectively turned on chemically upon bioorthogonal inverse‐electron‐demand Diels–Alder reaction with proteins modified genetically with strained trans‐cyclooctenes.  相似文献   

16.
The strain-promoted azide–alkyne cycloaddition (SPAAC) is the most widely used bioorthogonal reaction for imaging azide-labeled glycans in living systems. Rapid SPAAC reactions are essential for visualizing biological processes that occur on a short timescale, and efforts to increase SPAAC reaction rates by modulating the cyclooctyne structure have been highly successful. However, optimizing azido sugar structure for improved SPAAC rates has not been explored. In this study, we show that altering azide position on the sugar ring can have a modest but significant impact on SPAAC reaction rate, which has implications for designing and interpreting experiments involving azide-specific bioorthogonal reactions.  相似文献   

17.
Reaction of Etanidazole (a 2‐nitroimidazole derivative with an amide side‐chain containing a hydroxyethyl group) with triflic anhydride gives, depending on conditions, a trifluoromethyl(sulfonyl)oxazolidine via a cyclization reaction, or a fluorine‐free formate derivative; reaction with tosyl chloride gives only a chloroethyl derivative. An attempt to replace a Br‐atom in a related propyl‐containing amide side‐chain by a F‐atom forms instead a propylene derivative via loss of HBr. The studies stem from interest in use of 2‐nitroimidazoles with fluorine‐containing amide side‐chains as hypoxia markers.  相似文献   

18.
Inverse electron‐demand Diels–Alder cycloadditions (iEDDAC) between tetrazines and strained alkenes/alkynes have emerged as essential tools for studying and manipulating biomolecules. A light‐triggered version of iEDDAC (photo‐iEDDAC) is presented that confers spatio‐temporal control to bioorthogonal labeling in vitro and in cellulo. A cyclopropenone‐caged dibenzoannulated bicyclo[6.1.0]nonyne probe (photo‐DMBO) was designed that is unreactive towards tetrazines before light‐activation, but engages in iEDDAC after irradiation at 365 nm. Aminoacyl tRNA synthetase/tRNA pairs were discovered for efficient site‐specific incorporation of tetrazine‐containing amino acids into proteins in living cells. In situ light activation of photo‐DMBO conjugates allows labeling of tetrazine‐modified proteins in living E. coli. This allows proteins in living cells to be modified in a spatio‐temporally controlled manner and may be extended to photo‐induced and site‐specific protein labeling in animals.  相似文献   

19.
Over the past two decades, bioorthogonal chemistry has become a preferred tool to achieve site‐selective modifications of proteins. However, there are only a handful of commonly applied bioorthogonal reactions and they display some limitations, such as slow rates, use of unstable or cytotoxic reagents, and side reactions. Hence, there is significant interest in expanding the bioorthogonal chemistry toolbox. In this regard, boronic acids have recently been introduced in bioorthogonal chemistry and are exploited in three different strategies: 1) boronic ester formation between a boronic acid and a 1,2‐cis diol; 2) iminoboronate formation between 2‐acetyl/formyl‐arylboronic acids and hydrazine/hydroxylamine/semicarbazide derivatives; 3) use of boronic acids as transient groups in a Suzuki–Miyaura cross‐coupling or other reactions that leave the boronyl group off the conjugation product. In this Review, we summarize progress made in the use of boronic acids in bioorthogonal chemistry to enable site‐selective labeling of proteins and compare these methods with the most commonly utilized bioorthogonal reactions.  相似文献   

20.
The metabolic oligosaccharide engineering (MOE) strategy using unnatural sialic acids has recently enabled the visualization of the sialome in living systems. However, MOE only reports on global sialylation and dissected information regarding subsets of sialosides is missing. Described here is the synthesis and utilization of sialic acids modified with a sydnone reporter for the metabolic labeling of sialoconjugates. The positioning of the reporter on the sugar significantly altered its metabolic fate. Further in vitro enzymatic assays revealed that the 9‐modified neuraminic acid is preferentially accepted by the sialyltransferase ST6Gal‐I over ST3Gal‐IV, leading to the favored incorporation of the reporter into linkage‐specific α2,6‐N‐linked sialoproteins. This sydnone sugar presents the possibility of investigating the roles of specific sialosides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号