首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Over zeolite H‐ZSM‐5, the aromatics‐based hydrocarbon‐pool mechanism of methanol‐to‐olefins (MTO) reaction was studied by GC‐MS, solid‐state NMR spectroscopy, and theoretical calculations. Isotopic‐labeling experimental results demonstrated that polymethylbenzenes (MBs) are intimately correlated with the formation of olefin products in the initial stage. More importantly, three types of cyclopentenyl cations (1,3‐dimethylcyclopentenyl, 1,2,3‐trimethylcyclopentenyl, and 1,3,4‐trimethylcyclopentenyl cations) and a pentamethylbenzenium ion were for the first time identified by solid‐state NMR spectroscopy and DFT calculations under both co‐feeding ([13C6]benzene and methanol) conditions and typical MTO working (feeding [13C]methanol alone) conditions. The comparable reactivity of the MBs (from xylene to tetramethylbenzene) and the carbocations (trimethylcyclopentenyl and pentamethylbenzium ions) in the MTO reaction was revealed by 13C‐labeling experiments, evidencing that they work together through a paring mechanism to produce propene. The paring route in a full aromatics‐based catalytic cycle was also supported by theoretical DFT calculations.  相似文献   

2.
The methanol to olefins conversion over zeolite catalysts is a commercialized process to produce light olefins like ethene and propene but its mechanism is not well understood. We herein investigated the formation of ethene in the methanol to olefins reaction over the H‐ZSM‐5 zeolite. Three types of ethylcyclopentenyl carbocations, that is, the 1‐methyl‐3‐ethylcyclopentenyl, the 1,4‐dimethyl‐3‐ethylcyclopentenyl, and the 1,5‐dimethyl‐3‐ethylcyclopentenyl cation were unambiguously identified under working conditions by both solid‐state and liquid‐state NMR spectroscopy as well as GC‐MS analysis. These carbocations were found to be well correlated to ethene and lower methylbenzenes (xylene and trimethylbenzene). An aromatics‐based paring route provides rationale for the transformation of lower methylbenzenes to ethene through ethylcyclopentenyl cations as the key hydrocarbon‐pool intermediates.  相似文献   

3.
Hydrocarbon‐pool chemistry is important in methanol to olefins (MTO) conversion on acidic zeolite catalysts. The hydrocarbon‐pool (HP) species, such as methylbenzenes and cyclic carbocations, confined in zeolite channels during the reaction are essential in determining the reaction pathway. Herein, we experimentally demonstrate the formation of supramolecular reaction centers composed of organic hydrocarbon species and the inorganic zeolite framework in H‐ZSM‐5 zeolite by advanced 13C–27Al double‐resonance solid‐state NMR spectroscopy. Methylbenzenes and cyclic carbocations located near Brønsted acid/base sites form the supramolecular reaction centers in the zeolite channel. The internuclear spatial interaction/proximity between the 13C nuclei (associated with HP species) and the 27Al nuclei (associated with Brønsted acid/base sites) determines the reactivity of the HP species. The closer the HP species are to the zeolite framework Al, the higher their reactivity in the MTO reaction.  相似文献   

4.
By using 13C MAS NMR spectroscopy (MAS=magic angle spinning), the conversion of selectively 13C‐labeled n‐butane on zeolite H‐ZSM‐5 at 430–470 K has been demonstrated to proceed through two pathways: 1) scrambling of the selective 13C‐label in the n‐butane molecule, and 2) oligomerization–cracking and conjunct polymerization. The latter processes (2) produce isobutane and propane simultaneously with alkyl‐substituted cyclopentenyl cations and condensed aromatic compounds. In situ 13C MAS NMR and complementary ex situ GC–MS data provided evidence for a monomolecular mechanism of the 13C‐label scrambling, whereas both isobutane and propane are formed through intermolecular pathways. According to 13C MAS NMR kinetic measurements, both pathways proceed with nearly the same activation energies (Ea=75 kJ mol?1 for the scrambling and 71 kJ mol?1 for isobutane and propane formation). This can be rationalized by considering the intermolecular hydride transfer between a primarily initiated carbenium ion and n‐butane as being the rate‐determining stage of the n‐butane conversion on zeolite H‐ZSM‐5.  相似文献   

5.
Experimental evidence for the presence of tert‐butyl cations, which are important intermediates in acid‐catalyzed heterogeneous reactions, on solid acids has still not been provided to date. By combining density functional theory (DFT) calculations with 1H/13C magic‐angle‐spinning NMR spectroscopy, the tert‐butyl cation was successfully identified on zeolite H‐ZSM‐5 upon conversion of isobutene by capturing this intermediate with ammonia.  相似文献   

6.
7.
Co‐conversion of alkane with another reactant over zeolite catalysts has emerged as a new approach to the long‐standing challenge of alkane transformation. With the aid of solid‐state NMR spectroscopy and GC‐MS analysis, it was found that the co‐conversion of propane and methanol can be readily initiated by hydride transfer at temperatures of ≥449 K over the acidic zeolite H‐ZSM‐5. The formation of 13C‐labeled methane and singly 13C‐labeled n‐butanes in selective labeling experiments provided the first evidence for the initial hydride transfer from propane to surface methoxy intermediates. The results not only provide new insight into carbocation chemistry of solid acids, but also shed light on the low‐temperature transformation of alkanes for industrial applications.  相似文献   

8.
《中国化学》2018,36(5):381-386
Zeolites catalyzed methanol‐to‐olefins (MTO) conversion provides an alternative process to produce light olefins such as ethene and propene from nonpetroleum resources. Despite of successful industrialization of the MTO process, its detailed reaction mechanism is not yet well understood. Here we summarize our work on the hydrocarbon pool reaction mechanism based on theoretical calculations. We proposed that the olefins themselves are likely to be the dominating hydrocarbon pool species, and the distribution of cracking precursors and diffusion constraints affect the selectivity. The similarities between aromatic‐based and olefin‐based cycles are highlighted.  相似文献   

9.
Surface methoxy species bound to an extra‐framework Al (SMS‐EFAL) was unambiguously identified by advanced 13C‐{27Al} double‐resonance solid‐state NMR technique in the methanol‐to‐olefins reaction on H‐ZSM‐5 zeolite. The high reactivity of the SMS‐EFAL leads to the formation of surface ethoxy species and ethanol as the key intermediates for ethene generation in the early reaction stage. A direct route for the initial C?C bond formation in ethene was proposed and corroborated by density functional theory calculations.  相似文献   

10.
Diatom biosilica is an inorganic/organic hybrid with interesting properties. The molecular architecture of the organic material at the atomic and nanometer scale has so far remained unknown, in particular for intact biosilica. A DNP‐supported ssNMR approach assisted by microscopy, MS, and MD simulations was applied to study the structural organization of intact biosilica. For the first time, the secondary structure elements of tightly biosilica‐associated native proteins in diatom biosilica were characterized in situ. Our data suggest that these proteins are rich in a limited set of amino acids and adopt a mixture of random‐coil and β‐strand conformations. Furthermore, biosilica‐associated long‐chain polyamines and carbohydrates were characterized, thereby leading to a model for the supramolecular organization of intact biosilica.  相似文献   

11.
A series of transition‐metal organometallic complexes with commonly occurring metal? chlorine bonding motifs were characterized using 35Cl solid‐state NMR (SSNMR) spectroscopy, 35Cl nuclear quadrupole resonance (NQR) spectroscopy, and first‐principles density functional theory (DFT) calculations of NMR interaction tensors. Static 35Cl ultra‐wideline NMR spectra were acquired in a piecewise manner at standard (9.4 T) and high (21.1 T) magnetic field strengths using the WURST‐QCPMG pulse sequence. The 35Cl electric field gradient (EFG) and chemical shielding (CS) tensor parameters were readily extracted from analytical simulations of the spectra; in particular, the quadrupolar parameters are shown to be very sensitive to structural differences, and can easily differentiate between chlorine atoms in bridging and terminal bonding environments. 35Cl NQR spectra were acquired for many of the complexes, which aided in resolving structurally similar, yet crystallographically distinct and magnetically inequivalent chlorine sites, and with the interpretation and assignment of 35Cl SSNMR spectra. 35Cl EFG tensors obtained from first‐principles DFT calculations are consistently in good agreement with experiment, highlighting the importance of using a combined approach of theoretical and experimental methods for structural characterization. Finally, a preliminary example of a 35Cl SSNMR spectrum of a transition‐metal species (TiCl4) diluted and supported on non‐porous silica is presented. The combination of 35Cl SSNMR and 35Cl NQR spectroscopy and DFT calculations is shown to be a promising and simple methodology for the characterization of all manner of chlorine‐containing transition‐metal complexes, in pure, impure bulk and supported forms.  相似文献   

12.
On an atomic scale and with high sensitivity, solid‐state NMR spectroscopy can provide information about the electronic spin density and coupling mechanisms in paramagnetic compounds. The picture shows how the hyperfine splitting collapses through relaxation. Insights into which compounds are suitable and which approximations have to be made are given.

  相似文献   


13.
The understanding of catalyst deactivation represents one of the major challenges for the methanol‐to‐hydrocarbon (MTH) reaction over acidic zeolites. Here we report the critical role of intermolecular π‐interactions in catalyst deactivation in the MTH reaction on zeolites H‐SSZ‐13 and H‐ZSM‐5. π‐interaction‐induced spatial proximities between cyclopentenyl cations and aromatics in the confined channels and/or cages of zeolites are revealed by two‐dimensional solid‐state NMR spectroscopy. The formation of naphtalene as a precursor to coke species is favored due to the reaction of aromatics with the nearby cyclopentenyl cations and correlates with both acid density and zeolite topology.  相似文献   

14.
A microautoclave magic angle spinning NMR rotor is developed enabling in situ monitoring of solid–liquid–gas reactions at high temperatures and pressures. It is used in a kinetic and mechanistic study of the reactions of cyclohexanol on zeolite HBEA in 130 °C water. The 13C spectra show that dehydration of 1‐13C‐cyclohexanol occurs with significant migration of the hydroxy group in cyclohexanol and the double bond in cyclohexene with respect to the 13C label. A simplified kinetic model shows the E1‐type elimination fully accounts for the initial rates of 1‐13C‐cyclohexanol disappearance and the appearance of the differently labeled products, thus suggesting that the cyclohexyl cation undergoes a 1,2‐hydride shift competitive with rehydration and deprotonation. Concurrent with the dehydration, trace amounts of dicyclohexyl ether are observed, and in approaching equilibrium, a secondary product, cyclohexyl‐1‐cyclohexene is formed. Compared to phosphoric acid, HBEA is shown to be a more active catalyst exhibiting a dehydration rate that is 100‐fold faster per proton.  相似文献   

15.
We report the supercell crystal structure of a ZIF‐8 analog substituted imidazolate metal–organic framework (SIM‐1) obtained by combining solid‐state nuclear magnetic resonance and powder X‐ray diffraction experiments with density functional theory calculations.  相似文献   

16.
The key step in the conversion of methane to polyolefins is the catalytic conversion of methanol to light olefins. The most recent formulations of a reaction mechanism for this process are based on the idea of a complex hydrocarbon‐pool network, in which certain organic species in the zeolite pores are methylated and from which light olefins are eliminated. Two major mechanisms have been proposed to date—the paring mechanism and the side‐chain mechanism—recently joined by a third, the alkene mechanism. Recently we succeeded in simulating a full catalytic cycle for the first of these in ZSM‐5, with inclusion of the zeolite framework and contents. In this paper, we will investigate crucial reaction steps of the second proposal (the side‐chain route) using both small and large zeolite cluster models of ZSM‐5. The deprotonation step, which forms an exocyclic double bond, depends crucially on the number and positioning of the other methyl groups but also on steric effects that are typical for the zeolite lattice. Because of steric considerations, we find exocyclic bond formation in the ortho position to the geminal methyl group to be more favourable than exocyclic bond formation in the para position. The side‐chain growth proceeds relatively easily but the major bottleneck is identified as subsequent de‐alkylation to produce ethene. These results suggest that the current formulation of the side‐chain route in ZSM‐5 may actually be a deactivating route to coke precursors rather than an active ethene‐producing hydrocarbon‐pool route. Other routes may be operating in alternative zeotype materials like the silico‐aluminophosphate SAPO‐34.  相似文献   

17.
1H‐detection can greatly improve spectral sensitivity in biological solid‐state NMR (ssNMR), thus allowing the study of larger and more complex proteins. However, the general requirement to perdeuterate proteins critically curtails the potential of 1H‐detection by the loss of aliphatic side‐chain protons, which are important probes for protein structure and function. Introduced herein is a labelling scheme for 1H‐detected ssNMR, and it gives high quality spectra for both side‐chain and backbone protons, and allows quantitative assignments and aids in probing interresidual contacts. Excellent 1H resolution in membrane proteins is obtained, the topology and dynamics of an ion channel were studied. This labelling scheme will open new avenues for the study of challenging proteins by ssNMR.  相似文献   

18.
Melanin is the most widespread pigment in the animal kingdom. Despite its importance, its detailed structure and overall molecular architecture remain elusive. Both eumelanin (black) and pheomelanin (red) occur in the human body. These two melanin compounds show very different responses to UV‐radiation exposure, which could relate to their microscopic features. Herein, the structural properties and motional behavior of natural eu‐ and pheomelanin extracted from black and red human hair are investigated by means of solid‐state NMR spectroscopy. Several 1D and 2D NMR spectroscopic techniques were combined to highlight the differences between the two forms of the pigment. The quantitative analysis of the 1H NMR wide‐line spectra extracted from 2D 1H–13C LG‐WISE experiments revealed the presence of two dynamically distinguishable components in both forms. Remarkably, the more mobile fraction of the pigment showed a higher mobility with respect to the proteinaceous components that coexist in the melanosome, which is particularly evident for the red pigment. An explanation of the observed effects takes into account the different architecture of the proteinaceous matrix that constitutes the physical substrate onto which melanin polymerizes within the eu‐ and pheomelanosomes. Further insight into the molecular structure of the more mobile fraction of pheomelanin was also obtained by means of the analysis of 2D 1H–13C INEPT experiments. Our view is that not only structural features inherent in the pure pigment, but also the role of the matrix structure in defining the overall melanin supramolecular arrangement and the resulting dynamic behavior of the two melanin compounds should be taken into account to explain their functions. The reported results could pave a new way toward the explanation of the molecular origin of the differences in the photoprotection activity displayed by black and red melanin pigments.  相似文献   

19.
20.
The application of periodic density functional theory‐based methods to the calculation of 95Mo electric field gradient (EFG) and chemical shift (CS) tensors in solid‐state molybdenum compounds is presented. Calculations of EFG tensors are performed using the projector augmented‐wave (PAW) method. Comparison of the results with those obtained using the augmented plane wave + local orbitals (APW+lo) method and with available experimental values shows the reliability of the approach for 95Mo EFG tensor calculation. CS tensors are calculated using the recently developed gauge‐including projector augmented‐wave (GIPAW) method. This work is the first application of the GIPAW method to a 4d transition‐metal nucleus. The effects of ultra‐soft pseudo‐potential parameters, exchange‐correlation functionals and structural parameters are precisely examined. Comparison with experimental results allows the validation of this computational formalism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号