首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We introduce the novel fluoroalkoxy molybdenum(V) reagent 1 which has superior reactivity and selectivity in comparison to MoCl5 or the MoCl5/TiCl4 reagent mixture in the oxidative coupling reactions of aryls. Common side reactions, such as chlorination and/or oligomer formation, are drastically diminished creating a powerful and useful reagent for oxidative coupling. Theoretical treatment of the reagent interaction with 1,2‐dimethoxybenzene‐type substrates indicates an inner‐sphere electron transfer followed by a radical cationic reaction pathway for the oxidative‐coupling process. EPR spectroscopic and electrochemical studies, X‐ray analyses, computational investigations, and the experimental scope provide a highly consistent picture. The substitution of chlorido ligands by hexafluoroisopropoxido moieties seems to boost both the reactivity and selectivity of the metal center which might be applied to other reagents as well.  相似文献   

2.
Molybdenum pentachloride is an unusually powerful reagent for the dehydrogenative coupling of arenes. Owing to the high reaction rate using MoCl5, several labile moieties are tolerated in this transformation. The mechanistic course of the reaction was controversially discussed although indications for a single electron transfer as the initial step were found recently. Herein, based on a combined study including synthetic investigations, electrochemical measurements, EPR spectroscopy, DFT calculations, and mass spectrometry, we deduct a highly consistent mechanistic scenario: MoCl5 acts as a one‐electron oxidant in the absence of TiCl4 and as two‐electron oxidant in the presence of TiCl4, but leads to an over‐oxidized intermediate in both cases, which protects it from side reactions. In the course of aqueous work‐up the reagent waste (MoIII/IV species) acts as reducing agent generating the desired organic C?C coupling product.  相似文献   

3.
以廉价易得的5-溴香草醛和2,4,6-三羟基苯乙酮为起始原料,首次方便,高效地合成了(±)-Palstatin (1).合成的关键步骤为SeO2促进的氧化环化和Ag2O催化的氧化偶联反应.  相似文献   

4.
5.
ortho‐Aryl phenols, synthesized via protecting group free Suzuki–Miyaura coupling of ortho‐halophenols and arene boronic acids, undergo a cyclization to dibenzofurans via oxidative C–H activation. The reaction proceeds under microwave irradiation in short reaction times using catalytic amounts of Pd(OAc)2 without additional ligands.  相似文献   

6.
The asymmetric oxidative coupling polymerization of methyl 6,6′‐dihydroxy‐2,2′‐binaphthalene‐7‐carboxylate with the copper‐diamine catalysts under an O2 atmosphere was carried out. As is the case with the CuCl‐2,2′‐(S)‐isopropylidenbis(4‐phenyl‐2‐oxazoline) [(S)IPhO] catalyst, a polymer with a high cross‐coupling selectivity of 96% was obtained in 71% yield, whose THF‐soluble part had a number‐average molecular weight of 4.5 × 103. To estimate the enantioselectivity with respect to the cross‐coupling linkage in the obtained polymer, the model asymmetric oxidative cross‐coupling reaction with CuCl‐(S)IPhO was also conducted, and the products showed a 94% cross‐coupling selectivity and enantioselectivity of 31% ee (S). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6287–6294, 2005  相似文献   

7.
The catalytic cross‐dehydrogenative coupling (CDC) reaction has received intense attention in recent years. The attractive feature of this coupling process is the formation of a C? C bond from two C? H moieties under oxidative conditions. In this Focus Review, recent advances in the palladium‐catalyzed CDC reactions of C(sp2)? H bond are summarized, with a focus on the period from 2011 to early 2013.  相似文献   

8.
The direct oxidative cross‐coupling of phenols is a very challenging transformation, as homo‐coupling is usually strongly preferred. Electrochemical methods circumvent the use of oxidizing reagents or metal catalysts and are therefore highly attractive. Employing electrolytes with a high capacity for hydrogen bonding, such as methanol with formic acid or 1,1,1,3,3,3‐hexafluoro‐2‐propanol, a direct electrolysis in an undivided cell provides mixed 2,2′‐biphenols with high selectivity. This mild method tolerates a variety of moieties, for example, tert‐butyl groups, which are not compatible with other strong electrophilic media but vital for later catalytic applications of the formed products.  相似文献   

9.
The oxidative coupling of anionic imidazol‐4‐ylidenes protected at the C2 position with [MnCp(CO)2] or BH3 led to the corresponding 4,4′‐bis(2H‐imidazol‐2‐ylidene) complexes or adducts, in which the two carbene moieties are connected through a single C?C bond. Subsequent acidic treatment of the later species led to the corresponding 4,4′‐bis(imidazolium) salts in good yields. The overall procedure offers practical access to a novel class of Janus‐type bis(NHC)s. Strikingly, the coplanarity of the two NHC rings within the mesityl derivative 4,4′‐bis(IMes), favored by steric hindrance along with stabilizing intramolecular C?H???π aryl interactions, allows the alignment of the π‐systems and, as a direct consequence, significant electron communication through the bis(carbene) scaffold.  相似文献   

10.
7‐Oxabenzonorbornadienes derivatives 1 a – d underwent reductive coupling with alkyl propiolates CH3C?CCO2CH3 ( 2 a ), PhC?CCO2Et ( 2 b ), CH3(CH2)3C?CCO2CH3 ( 2 c ), CH3(CH2)4C?CCO2CH3 ( 2 d ), TMSC?CCO2Et ( 2 e ), (CH3)3C?CCO2CH3 ( 2 f ) and HC?CCO2Et ( 2 g ) in the presence of [NiBr2(dppe)] (dppe=Ph2PCH2CH2PPh2), H2O and zinc powder in acetonitrile at room temperature to afford the corresponding 2alkenyl‐1,2‐dihydronapthalen‐1‐ol derivatives 3 a – n with remarkable regio‐ and diastereoselectivity in good to excellent yields. Similarly, the reaction of 7azabenzonorbornadienes derivative 1 e with propiolates 2 a, b and d proceeded smoothly to afford reductive coupling products 2alkenyl‐1,2‐dihydronapthalene carbamates 3 o – p in good yields with high regio‐ and stereoselectivity. This nickel‐catalyzed reductive coupling can be further extended to the reaction of 7oxabenzonorbornene derivatives. Thus, 5,6‐di(methoxymethyl)‐7‐oxabicyclo[2.2.1]hept‐2‐ene ( 4 ) reacted with 2 a and 2 d to furnish cyclohexenol derivatives bearing four cis substituents 5 a and b in 81 and 84 % yield, respectively. In contrast to the results of 4 with 2 , the reaction of dimethyl 7oxabicyclo[2.2.1]hept‐5‐ene‐2,3‐dicarboxylate ( 6 ) with propiolates 2 a – d afforded the corresponding reductive coupling/cyclization products, bicyclo[3.2.1]γ‐lactones 7 a – d in good yields. The reaction provides a convenient one‐pot synthesis of γ‐lactones with remarkably high regio‐ and stereoselectivity.  相似文献   

11.
A concise and efficient synthesis of densely substituted novel pyrazoles with alkynyl, aryl and ferrocenyl functionalities is reported, providing a platform for biological studies. The general strategy involves Sonogashira and Suzuki–Miyaura cross‐coupling reactions of easily obtainable 5‐ferrocenyl/phenyl‐4‐iodo‐1‐phenylpyrazoles with terminal alkynes and boronic acids, respectively. The starting 4‐iodopyrazoles were synthesized by electrophilic cyclization of α,β‐alkynic hydrazones with molecular iodine. Sonogashira reactions have been achieved by employing 5 mol% PdCl2(PPh3)2, 5 mol% CuI, excess Et3N and 1.2 equiv. of terminal alkyne, relative to 4‐iodopyrazole, in tetrahydrofuran at 65 °C, while Suzuki–Miyaura reactions have been accomplished using 5 mol% PdCl2(PPh3)2 and 1.4 equiv. of both boronic acid/ester and KHCO3, with respect to 4‐iodopyrazole, in 4:1 dimethylformamide–H2O solution at 110 °C. Both Sonogashira and Suzuki–Miyaura coupling reactions have proven effective for the synthesis of alkynyl‐, aryl‐ and ferrocenyl‐substituted pyrazoles and demonstrated good tolerance to a diverse range of substituents, including electron‐donating and electron‐withdrawing groups. These coupling approaches could allow for the rapid construction of a library of functionalized pyrazoles of pharmacological interest. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Readily prepared tetraarylborates undergo selective (cross)‐coupling through oxidation with Bobbitt's salt to give symmetric and unsymmetric biaryls. The organic oxoammonium salt can be used either as a stoichiometric oxidant or as a catalyst in combination with in situ generated NO2 and molecular oxygen as the terminal oxidant. For selected cases, oxidative coupling is also possible with NO2/O2 without any additional nitroxide‐based cocatalyst. Transition‐metal‐free catalytic oxidative ligand cross‐coupling of tetraarylborates is unprecedented and the introduced method provides access to various biaryl and heterobiaryl systems.  相似文献   

13.
The synthesis of new methylated thieno[2,3‐a] and [3,2‐b]carbazoles (5) (R=H) was achieved by a palladium‐catalyzed cross‐coupling, intramolecular reductive cyclization sequence of reactions. The cyclization precursors 6‐(2′‐nitrophenyl)benzo[b]thiophenes (3) were obtained by Suzuki cross‐coupling of 6‐boronated methylbenzo[b]thiophenes intermediates (2) with 2‐bromo or iodonitrobenzene. The boronated intermediates (2) were prepared via bromine‐lithium exchange followed by boron transmetalation and coupled in situ using Pd(OAc)2 giving thus a “one‐pot” three steps reaction from the 6‐bromobenzo[b]thio‐phenes (1) to the cyclization precursors (3) . In the reductive cyclization step, N‐ethylthienocarbazoles (5) (R=Et) were also obtained. Several experiments have been made varying the amount of triethylphosphite and the time of reaction, to avoid their formation.  相似文献   

14.
The oxidative trimerization of catechol ketals by MoCl5 or MoCl5/TiCl4 mixtures leads preferentially to the allsyn stereoisomer of the corresponding triphenylene ketal. The concomitant metal salts of the oxidative coupling most probably form a multinuclear template that directs the diastereoselectivity in a subsequent isomerization step under electrophilic conditions. Several functionalities can serve as coordination sites for the multinuclear metal chloro clusters. Suitable functional groups have to be stable towards the strong electrophilic and oxidizing conditions. Therefore, esters, nitriles, nitro derivatives, triazoles, and pyridines are successfully employed. Based on the flexibility and size of the substrate, different reagent mixtures lead to the stereoselective formation of the allsyn derivatives.  相似文献   

15.
The application of non‐toxic and magnetically separable nano‐CuFe2O4 as an efficient catalyst for oxidative homo‐ and cross‐coupling reaction of terminal alkynes is described. A wide range of symmetrical and unsymmetrical 1,3‐diynes have been synthesized in moderate to good yields under ambient atmosphere. The nano CuFe2O4 can be recovered with a magnet and reused at least five consecutive cycles with no appreciable loss of its catalytic activity.  相似文献   

16.
In this paper, a bimolecular‐cyclization reaction between two different bis(allene)s with at least one heteroatom as the tether under the catalysis of trans‐[RhCl(CO)(PPh3)2] is described. This protocol provides an efficient entry to different heterocyclic 18,19‐norsteroid‐like scaffolds. The tricyclic product was formed highly selectively from the cyclization reaction of bis(2,3‐butadienyl)sulfide with dimethyl 2‐bis(2′,3′‐butadienyl)malonate, which sheds light on the mechanism involving the metalla‐[4.3.0]‐bicyclic intermediate formed by the cyclometallation of the terminal and the internal C=C bonds of each of the two allene moieties in 2‐bis(2′,3′‐butadienyl)malonate.  相似文献   

17.
Various effects on the coupling selectivity of the oxidative polymerization of 4‐phenoxyphenol catalyzed by (1,4,7‐triisopropyl‐1,4,7‐triazacyclononane)copper(II) halogeno complex [Cu(tacn)X2] are described. With respect to the amount of the catalyst and the nature of the halide ion (X) of Cu(tacn)X2, the coupling selectivity hardly changed. The Cu(tacn) catalyst possessed a turnover number greater than 1860. As the temperature of the reaction and the polarity of the reaction solvent were elevated, the C O coupling at the o‐position increased, but the C C coupling was not involved. For the polymerization in toluene at 80 °C, poly(1,4‐phenylene oxide), obtained as a methanol‐insoluble part, showed the highest number‐average molecular weight of 4000 with a melting point (Tm) of 195 °C. Only a slight change in the coupling selectivity was observed in the presence or absence of hindered amines as the base. Surprisingly, however, the C O selectivity decreased from 100 to 24% with less hindered amines, indicating that the selectivity drastically changed from a preference for C O coupling to a preference for C C coupling. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4792–4804, 2000  相似文献   

18.
The oxidative coupling polymerization of triphenylamine derivatives having 2‐naphthol moieties with a CuCl‐2,2′‐isopropylidenebis(4‐phenyl‐2‐oxazoline) catalyst under an O2 atmosphere was carried out. The polymerization of the monomer bearing both the hydroxynaphthoate and naphthol units afforded a hyperbranched polymer with a high cross‐coupling selectivity of > 99%, which showed a number‐average molecular weight of 20.3 × 103. In addition, the obtained polymer was quite soluble in THF. The photoluminescence and electrochemical properties of the obtained polymers were also examined. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1034–1041, 2008  相似文献   

19.
We report high‐performance I+/H2O2 catalysis for the oxidative or decarboxylative oxidative α‐azidation of carbonyl compounds by using sodium azide under biphasic neutral phase‐transfer conditions. To induce higher reactivity especially for the α‐azidation of 1,3‐dicarbonyl compounds, we designed a structurally compact isoindoline‐derived quaternary ammonium iodide catalyst bearing electron‐withdrawing groups. The nonproductive decomposition pathways of I+/H2O2 catalysis could be suppressed by the use of a catalytic amount of a radical‐trapping agent. This oxidative coupling tolerates a variety of functional groups and could be readily applied to the late‐stage α‐azidation of structurally diverse complex molecules. Moreover, we achieved the enantioselective α‐azidation of 1,3‐dicarbonyl compounds as the first successful example of enantioselective intermolecular oxidative coupling with a chiral hypoiodite catalyst.  相似文献   

20.
Well‐defined and air‐stable PEPPSI (Pyridine Enhanced Precatalyst Preparation Stabilization and Initiation) themed palladium bis‐N‐heterocyclic carbene complexes have been developed for the domino Sonogashira coupling/cyclization reaction of 2‐iodophenol with a variety of terminal alkynes and C‐H bond arylation of benzothiazole with aryl iodides. The PEPPSI themed palladium complexes, 2a and 2b were synthesized in good yields from the reaction of corresponding imidazolium salts with PdCl2 and K2CO3 in pyridine. The new air‐stable palladium‐NHC complexes were characterized by NMR spectroscopy, X‐ray crystallography, elemental analysis, and mass spectroscopy studies. The PEPPSI themed palladium(II) bis‐N‐heterocyclic carbene complexes 2a and 2b exhibited excellent catalytic activities for domino Sonogashira coupling/cyclization reaction of 2‐iodophenol with terminal alkynes yielding benzofuran derivatives. In addition, the palladium complexes, 2a and 2b successfully catalyzed the direct C‐H bond arylation of benzothiazole with aryl iodides as coupling partners in presence of CuI as co‐catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号