首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of stable organosuperbases, N‐alkyl‐ and N‐aryl‐1,3‐dialkyl‐4,5‐dimethylimidazol‐2‐ylidene amines, were efficiently synthesized from N,N′‐dialkylthioureas and 3‐hydroxy‐2‐butanone and their basicities were measured in acetonitrile. The derivatives with tert‐alkyl groups on the imino nitrogen were found to be more basic than the tBu P1 (pyrr) phosphazene base in acetonitrile. The origin of the high basicity of these compounds is discussed. In acetonitrile and in the gas phase, the basicity of the alkylimino derivatives depends on the size of the substituent at the imino group, which influences the degree of aromatization of the imidazole ring, as measured by 13C NMR chemical shifts or by the calculated ΔNICS(1) aromaticity parameters, as well as on solvation effects. If a wider range of imino‐substituents, including electron‐acceptor substituents, is treated in the analysis then the influence of aromatization is less predominant and the gas‐phase basicity becomes more dependent on the field‐inductive effect, polarizability, and resonance effects of the substituent.  相似文献   

2.
Magnetized water (MW) is used as a green and new solvent‐promoting medium for the one‐pot, three‐component synthesis of novel 1,2,3‐triazole‐linked indoles catalyzed by copper iodide. A broad range of 2‐aryl‐1‐(prop‐2‐ynyl)‐1H‐indole‐3‐carbaldehydes were reacted with alkyl halides and sodium azide via copper‐catalyzed azide–alkyne cycloaddition reactions in MW in the absence of any ligand. This method offers the advantages of short reaction times, green procedure, low cost, simple work‐up, quantitative reaction yields, and no need for any organic solvent.  相似文献   

3.
Synthesis and Crystal Structure of the Dichlorine Adduct of 2, 3‐Dihydro‐1, 3‐diisopropyl‐4, 5‐dimethylimidazol‐2‐ylidene [1] 2, 3‐Dihydro‐1, 3‐diispropyl‐4, 5‐dimethylimidazol‐2‐ylidene ( 1 , Im) reacts with hexachloroethane to give the charge‐transfer adduct Im‐Cl‐Cl ( 2 ) in almost quantitative yield. The crystal structure of 2 reveals the presence of a near linear C‐Cl‐Cl fragment [Cl‐Cl 3.159(3)Å, C‐Cl‐Cl 166.1(1)°] which is discussed as weak chlorine interaction causing hypervalency at the central chlorine atom.  相似文献   

4.
(1RS,2SR,3RS,4SR,5RS)‐2,4‐Dibenzoyl‐1,3,5‐triphenylcyclohexan‐1‐ol or (4‐hydroxy‐2,4,6‐triphenylcyclohexane‐1,3‐diyl)bis(phenylmethanone), C38H32O3, (1), is formed as a by‐product in the NaOH‐catalyzed synthesis of 1,3,5‐triphenylpentane‐1,5‐dione from acetophenone and benzaldehyde. Single crystals of the chloroform hemisolvate, C38H32O3·0.5CHCl3, were grown from chloroform. The structure has triclinic (P) symmetry. One diastereomer [as a pair of (1RS,2SR,3RS,4SR,5RS)‐enantiomers] of (1) has been found in the crystal structure and confirmed by NMR studies. The dichoromethane hemisolvate has been reported previously [Zhang et al. (2007). Acta Cryst. E 63 , o4652]. (1RS,2SR,3RS,4SR,5RS)‐2,4‐Dibenzoyl‐3,5‐bis(2‐methoxyphenyl)‐1‐phenylcyclohexan‐1‐ol or [4‐hydroxy‐2,6‐bis(2‐methoxyphenyl)‐4‐phenylcyclohexane‐1,3‐diyl]bis(phenylmethanone), C40H36O5, (2), is also formed as a by‐product, under the same conditions, from acetophenone and 2‐methoxybenzaldehyde. Crystals of (2) have been grown from chloroform. The structure has orthorhombic (Pca21) symmetry. A diastereomer of (2) possesses the same configuration as (1). In both structures, the cyclohexane ring adopts a chair conformation with all bulky groups (benzoyl, phenyl and 2‐methoxyphenyl) in equatorial positions. The molecules of (1) and (2) both display one intramolecular O—H...O hydrogen bond.  相似文献   

5.
5‐Bromo[5,5‐dibromo]‐1,1,1‐trihalo‐4‐methoxy‐3‐penten[hexen]‐2‐ones are explored as precursors to the synthesis of 3‐ethoxymethyl‐5‐trifluoromethyl‐1H‐pyrazoles from a cyclocondensation reaction with hydrazine monohydrate in ethanol. 3‐Ethoxymethyl‐carboxyethyl ester pyrazoles were formed as a result of a substitution reaction of bromine and chlorine by ethanol. The dibrominated precursor furnished 3‐acetal‐pyrazole that was easily hydrolyzed to formyl group. In addition, brominated precursors were used in a nucleophilic substitution reaction with sodium azide to synthesize the 3‐azidomethyl‐5‐ethoxycarbonyl‐1H‐pyrazole from the reaction with hydrazine monohydrate. These products were submitted to a cycloaddition reaction with phenyl acetylene furnishing the 3‐[4(5)‐phenyl‐1,2,3‐triazolyl]5‐ ethoxycarbonyl‐1H‐pyrazoles and to reduction conditions resulting in 3‐aminomethyl‐1H‐pyrazole‐5‐carboxyethyl ester. The products were obtained by a simple methodology and in moderate to good yields.  相似文献   

6.
Quarternary salts based upon 3‐alkyl substituted 1‐amino‐1,2,3‐triazolium cations (alkyl = methyl, ethyl, nypropyl, 2‐propenyl, and n‐butyl) have been synthesized and characterized by vibrational spectra, multinuclear NMR, elemental analysis, and DSC studies. Subsequent diazotization of these salts results in the exclusive formation of 1‐alkyl‐1,2,3‐triazoles. Single crystal X‐ray studies were carried out for 1‐amino‐3‐methyl‐1,2,3‐triazolium iodide, 1‐amino‐3‐ethyl‐1,2,3‐triazolium bromide, 1‐amino‐3‐n‐propyl‐1,2,3‐triazolium bromide, and 1‐amino‐3‐n‐butyl‐1,2,3‐triazolium bromide as well as the starting heterocycle, 1‐amino‐1,2,3‐triazole, and all of the structures are discussed.  相似文献   

7.
This study features the preparation of three new energetic C‐azido‐1, 2, 4‐triazoles, with the anion of one being a new binary C–N compound. 5‐Azido‐1H‐1, 2, 4‐triazole‐3‐carbonitrile ( 1 ) was prepared from 5‐amino‐1H‐1, 2, 4‐triazole‐3‐carbonitrile and further derivatized to 5‐azido‐1H‐1, 2, 4‐triazole‐3‐carbohydroximoyl chloride ( 5 ) with 3‐azido‐1H‐1, 2, 4‐triazole‐5‐carboxamidoxime ( 3 ) as an intermediate. The ability of 1 and 3 for salt formation was shown with the respective silver salts 2 and 4 . All compounds were well characterized by various means, including IR and multinuclear NMR spectroscopy, mass spectrometry, and DSC. The molecular structures of 1 , 3 , and 5 in the solid state were determined by single‐crystal X‐ray diffraction. The sensitivities towards various outer stimuli (impact, friction, electrostatic discharge) were determined according to BAM standards. The silver salts were additionally tested for their potential as primary explosives.  相似文献   

8.
The thermal stability of several commonly used crystalline matrix‐assisted ultraviolet laser desorption/ionization mass spectrometry (UV‐MALDI‐MS) matrices, 2,5‐dihydroxybenzoic acid (gentisic acid; GA), 2,4,6‐trihydroxyacetophenone (THA), α‐cyano‐4‐hydroxycinnamic acid (CHC), 3,5‐dimethoxy‐4‐hydroxycinnamic acid (sinapinic acid; SA), 9H‐pirido[3,4‐b]indole (nor‐harmane; nor‐Ho), 1‐methyl‐9H‐pirido[3,4‐b]indole (harmane; Ho), perchlorate of nor‐harmanonium ([nor‐Ho + H]+) and perchlorate of harmanonium ([Ho + H]+) was studied by heating them at their melting point and characterizing the remaining material by using different MS techniques [electron ionization mass spectrometry (EI‐MS), ultraviolet laserdesorption/ionization‐time‐of‐flight‐mass spectrometry (UV‐LDI‐TOF‐MS) and electrospray ionization‐time‐of‐flight‐mass spectrometry (ESI‐TOF‐MS)] as well as by thin layer chromatography analysis (TLC), electronic spectroscopy (UV‐absorption, fluorescence emission and excitation spectroscopy) and 1H nuclear magnetic resonance spectroscopy (1H‐NMR). In general, all compounds, except for CHC and SA, remained unchanged after fusion. CHC showed loss of CO2, yielding the trans‐/cis‐4‐hydroxyphenylacrilonitrile mixture. This mixture was unambiguously characterized by MS and 1H‐NMR spectroscopy, and its sublimation capability was demonstrated. These results explain the well‐known cluster formation, fading (vanishing) and further recovering of CHC when used as a matrix in UV‐MALDI‐MS. Commercial SA (SA 98%; trans‐SA/cis‐SA 5 : 1) showed mainly cis‐ to‐trans thermal isomerization and, with very poor yield, loss of CO2, yielding (3′,5′‐dimethoxy‐4′‐hydroxyphenyl)‐1‐ethene as the decarboxilated product. These thermal conversions would not drastically affect its behavior as a UV‐MALDI matrix as happens in the case of CHC. Complementary studies of the photochemical stability of these matrices in solid state were also conducted. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
A series of novel isoxazolyl‐4‐(2‐oxo‐2,3‐dihydro‐1H‐3‐indolyl)pyrrole‐3‐carboxylates ( 17a – i) were synthesized by a three‐component reaction of 4‐amino‐3‐methyl‐5‐styrylisoxazole 14 , β‐keto ester 15 , and 3‐phenacylideneoxindole 16 , in the presence of CAN catalyst in ethanol. The structures of the synthesized compounds have been established on the basis of spectral and analytical data. The title compounds 17a – i were evaluated for their anti‐inflammatory activity. Compounds 17b and 17c exhibited potent anti‐inflammatory activity as that of standard drug.  相似文献   

10.
Ttrans‐3,5‐dihydroperoxy‐3,5‐dimethyl‐1,2‐dioxalane has been used as new, effective, solid, inexpensive and nontoxic oxidant for in situ generation of Br+ from HBr. This system has been applied as catalyst for synthesis of 2‐aryl‐1H‐benzothiazoles and 2‐aryl‐1‐arylmethyl‐1H‐benzimidazoles at room temperature in excellent yields and high purity.  相似文献   

11.
Three‐component heterocyclization of 4‐amino‐5‐carboxamido‐1,2,3‐triazole, thiopyran‐3‐one‐1,1‐dioxide, and aromatic aldehydes under ultrasonic and microwave irradiation was studied. Regardless of the reaction parameters, 5,6,7,9‐tetrahydro‐4H‐thiopyrano[3,2‐d][1,2,3]triazolo[1,5‐a]pyrimidine‐8,8‐dioxides were isolated as sole reaction products whose structures were proven with help of NMR data and X‐ray analysis.  相似文献   

12.
A simple and efficient one‐pot synthesis of alkyl‐2‐(alkylimino)‐4‐methyl‐3‐phenyl‐2,3‐dihydrothiazole‐5‐carboxylate and dialkyl 3,3′‐(1,4‐phenylene)‐bis‐[2‐(alkylimino)‐4‐methyl‐2,3‐dihydrothiazole‐5‐carboxylate] derivatives from the reaction of phenylisothiocyanate (and also 1,4‐phenylene diisothiocyanate) and primary alkylamines in the presence of 2‐chloro‐1,3‐dicarbonyl compounds is described. This new protocol has several advantages such as lack of necessity of the catalyst and solvent, good yields,mild conditions and short times for reaction.  相似文献   

13.
A series of 10‐substituted‐3,3,6,6‐tetramethyl‐9‐aryl‐3,4,6,7,9,10‐hexahydroacridine‐1,8(2H ,5 H )‐dione derivatives 2 were synthesized by reaction of compounds 1 with amines. The compounds 1 were effectively prepared by 5,5‐dimethylcyclohexane‐1,3‐dione and aldehydes in the presence of a little amount of L‐proline as catalyst at room temperature. All the compounds were characterized by IR, MS, and 1H NMR. The crystal data of 1b and 2d were collected by X‐ray single‐crystal diffraction, and compounds 2b and 2d exhibited better inhibitory activity against HepG2 cells.  相似文献   

14.
The Schiff base ligand, 1‐phenyl‐3‐methyl‐5‐hydroxypyrazole‐4‐methylene‐8′‐quinolineimine, and its CuII, ZnII, and NiII complexes were synthesized and characterized. The crystal structure of the ZnII complex was determined by single‐crystal X‐ray diffraction, indicating that the metal ions and Schiff base ligand can form mononuclear six‐coordination complexes with 1:1 metal‐to‐ligand stoichiometry at the metal ions as centers. The binding mechanism and affinity of the ligand and its metal complexes to calf thymus DNA (CT DNA) were investigated by UV/Vis spectroscopy, fluorescence titration spectroscopy, EB displacement experiments, and viscosity measurements, indicating that the free ligand and its metal complexes can bind to DNA via an intercalation mode with the binding constants at the order of magnitude of 105–106 M –1, and the metal complexes can bind to DNA more strongly than the free ligand alone. In addition, antioxidant activities of the ligand and its metal complexes were investigated through scavenging effects for hydroxyl radical in vitro, indicating that the compounds show stronger antioxidant activities than some standard antioxidants, such as mannitol. The ligand and its metal complexes were subjected to cytotoxic tests, and experimental results indicated that the metal complexes show significant cytotoxic activity against lung cancer A 549 cells.  相似文献   

15.
A series of well‐defined amphiphilic triblock copolymers, poly(ethylene glycol)‐b‐poly(tert‐butyl acrylate)‐b‐poly(2‐hydroxyethyl methacrylate) (PEG‐b‐PtBA‐b‐PHEMA), were synthesized via successive atom transfer radical polymerization (ATRP). ATRP of tBA was first initiated by PEG‐Br macroinitiator using CuBr/N,N,N′,N″,N′″‐pentamethyldiethylenetriamine as catalytic system to give PEG‐b‐PtBA diblock copolymer. This copolymer was then used as macroinitiator to initiate ATRP of HEMA, which afforded the target triblock copolymer, PEG‐b‐PtBA‐b‐PHEMA. The critical micelle concentrations of obtained amphiphilic triblock copolymers were determined by fluorescence spectroscopy using N‐phenyl‐1‐naphthylamine as probe. The morphology and size of formed aggregates were investigated by transmission electron microscopy and dynamic light scattering, respectively. Finally, an acid‐sensitive PEG‐b‐PtBA‐b‐P(HEMA‐CAD) prodrug via cis‐aconityl linkage between doxorubicin and hydroxyls of triblock copolymers with a high drug loading content up to 38%, was prepared to preliminarily explore the application of triblock copolymer in drug delivery. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
A series of main‐chain, thermotropic, liquid‐crystalline (LC), hydrogen‐bonded polymers or self‐assembled structures based on 4,4′‐bipyridyl as a hydrogen‐bond acceptor and aliphatic dicarboxylic acids, such as adipic and sebacic acids, as hydrogen‐bond donors were prepared by a slow evaporation technique from a pyridine solution and were characterized for their thermotropic, LC properties with a number of experimental techniques. The homopolymer of 4,4′‐bipyridyl with adipic acid exhibited high‐order and low‐order smectic phases, and that with sebacic acid exhibited only a high‐order smectic phase. Like the homopolymer with adipic acid, the two copolymers of 4,4′‐bipyridyl with adipic and sebacic acids (75/25 and 25/75) also exhibited two types of smectic phases. In contrast, the copolymer of 4,4′‐bipyridyl with adipic and sebacic acids (50/50), like the homopolymer with sebacic acid, exhibited only one high‐order smectic phase. Each of them, including the copolymers, had a broad temperature range of LC phases (36–51 °C). The effect of copolymerization for these hydrogen‐bonded polymers on the thermotropic properties was examined. Generally, copolymerization increased the temperature range of LC phases for these polymers, as expected, with a larger decrease in the crystal‐to‐LC transition than in the LC‐to‐isotropic transition. Additionally, it neither suppressed the formation of smectic phases nor promoted the formation of a nematic phase in these hydrogen‐bonded polymers, as usually observed in many thermotropic LC polymers. The thermal transitions for all of them, measured by differential scanning calorimetry, were well below their decomposition temperatures, as measured by thermogravimetric analysis, which were in the temperature range of 193–210 °C. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1282–1295, 2003  相似文献   

17.
The synthesis and energetic properties of a novel N‐oxide high‐nitrogen compound, 6‐amino‐tetrazolo[1,5‐b]‐1,2,4,5‐tetrazine‐7‐N‐oxide, are described. Resulting from the N‐oxide and fused rings system, this molecule exhibits high density, excellent detonation properties, and acceptable impact and friction sensitivities, which suggests potential applications as an energetic material. Compared to known high‐nitrogen compounds, such as 3,6‐diazido‐1,2,4,5‐tetrazine (DiAT), 2,4,6‐tri(azido)‐1,3,5‐triazine (TAT), and 4,4′,6,6′‐tetra(azido)azo‐1,3,5‐triazine (TAAT), a marked performance and stability increase is seen. This supports the superior qualities of this new compound and the advantage of design strategy.  相似文献   

18.
An efficient, one‐pot synthetic protocol for polyfunctionalized 1,4‐dihydropyridine‐fused‐1,3‐diazaheterocycles, a class of biologically active compounds, starting from 1,1‐bis(methylthio)‐2‐nitroethylene, 1,n‐diamine, arylaldehyde, and malononitrile is described. The reactions are completed within 12–15 h under refluxing conditions and in the presence of 10 mol % of piperidine as a basic catalyst to produce the title compounds in 60–75% yields.  相似文献   

19.
A copper(II)‐catalysed approach to oxindoles, thio‐oxindoles, 3,4‐dihydro‐1H‐quinolin‐2‐ones, and 1,2,3,4‐tetrahydroquinolines via formal C?H, Ar?H coupling is described. In a new variant, copper(II) 2‐ethylhexanoate has been identified as an inexpensive and efficient catalyst for this transformation, which utilises atmospheric oxygen as the re‐oxidant.  相似文献   

20.
A series of pyrenoimidazoles that contained various functional chromophores, such as anthracene, pyrene, triphenylamine, carbazole, and fluorene, were synthesized and characterized by optical, electrochemical, and theoretical studies. The absorption spectra of the dyes are dominated by electronic transitions that arise from the pyrenoimidazole core and the additional chromophore. All of the dyes exhibited blue‐light photoluminescence with moderate‐to‐high quantum efficiencies. They also displayed high thermal stability and their thermal‐decomposition temperatures fell within the range 462–512 °C; the highest decomposition temperature was recorded for a carbazole‐containing dye. The oxidation propensity of the dyes increased on the introduction of electron‐rich chromophores, such as triphenylamine or carbazole. The application of selected dyes that featured additional chromophores such as pyrene, carbazole, and triphenylamine as blue‐emissive dopants into multilayered organic light‐emitting diodes with a 4,4′‐bis(9H‐carbazol‐9‐yl)biphenyl (CBP) host was investigated. Devices that were based on triphenylamine‐ and carbazole‐containing dyes exhibited deep‐blue emission (CIE 0.157, 0.054 and 0.163, 0.041), whereas a device that was based on a pyrene‐containing dye showed a bright‐blue emission (CIE 0.156, 0.135).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号