首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Optically active 1‐methylpropargyl esters bearing azobenzene groups, namely, (S)‐(?)‐3‐methyl‐3‐{4‐[4‐(n‐butyloxy)phenylazophenyl]carbonyl}oxy‐1‐propyne ( 1 ), (S)‐(?)‐3‐methyl‐3‐{4‐[4‐(n‐hexyloxy)phenylazophenyl]carbonyl}oxy‐1‐propyne ( 2 ), and (S)‐(?)‐3‐methyl‐3‐{4‐[4‐(n‐octyloxy)phenylazophenyl]carbonyl}oxy‐1‐propyne ( 3 ) were synthesized and polymerized with Rh+(nbd)[η6‐C6H5B?(C6H5)3] (nbd, norbornadiene) as a catalyst to afford the corresponding poly(1‐methyloropargyl ester)s with moderate molecular weights (Mn = 24,000–31,300) in good yields (79–84%). Polymers were soluble in common organic solvents including toluene, CHCl3, CH2Cl2, THF, and DMSO, whereas insoluble in diethyl ether, n‐hexane, and methanol. Large optical rotations and strong CD signals demonstrated that all the polymers take a helical structure with a predominantly one‐handed screw sense. The helical structure of the polymers changed with the addition of MeOH and heat. The trans‐azobenzene of the polymer side chains isomerized into cis on UV irradiation, which was accompanied with drastic helical conformational changes of the polymer backbone. The cis‐azobenzene moiety reisomerized into trans on visible‐light irradiation, which induced the recovery of chiral geometry of azobenzene moieties in the side chain. Conformational analysis revealed that the polymers form a tightly twisted right‐handed helical structure with a dihedral angle of 70° at the single bond of the main chain. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4749–4761, 2009  相似文献   

2.
The synthesis of the reactive PN(CH) ligand 2‐di(tert‐butylphosphanomethyl)‐6‐phenylpyridine ( 1H ) and its versatile coordination to a RhI center is described. Facile C?H activation occurs in the presence of a (internal) base, thus resulting in the new cyclometalated complex [RhI(CO)(κ3P,N,C‐ 1 )] ( 3 ), which has been structurally characterized. The resulting tridentate ligand framework was experimentally and computationally shown to display dual‐site proton‐responsive reactivity, including reversible cyclometalation. This feature was probed by selective H/D exchange with [D1]formic acid. The addition of HBF4 to 3 leads to rapid net protonolysis of the Rh?C bond to produce [RhI(CO)(κ3P,N,(C?H)‐ 1 )] ( 4 ). This species features a rare aryl C?H agostic interaction in the solid state, as shown by X‐ray diffraction studies. The nature of this interaction was also studied computationally. Reaction of 3 with methyl iodide results in rapid and selective ortho‐methylation of the phenyl ring, thus generating [RhI(CO)(κ2P,N‐ 1Me )] ( 5 ). Variable‐temperature NMR spectroscopy indicates the involvement of a RhIII intermediate through formal oxidative addition to give trans‐[RhIII(CH3)(CO)(I)(κ3P,N,C‐ 1 )] prior to C?C reductive elimination. The RhIIItrans‐diiodide complex [RhI(CO)(I)23P,N,C‐ 1 )] ( 6 ) has been structurally characterized as a model compound for this elusive intermediate.  相似文献   

3.
Poly(isobutylene‐co‐p‐methylstyrene) is an important precursor to Exxpro™ elastomers. A previous report detailed the characterization of both the proton and the carbon NMR spectra of the copolymer. 1 However, several resonances in the proton NMR spectrum of the copolymer were not assigned. Specifically, the proton methine resonance of the BSB triad sequence is now identified and used to calculate BSB triad contribution to the copolymer microstructure. This report describes the assignment of this resonance and other resonances associated with microstructural sequence distribution around p‐methylstyrene. The proton NMR signals of interest resonate at 2.8 ppm and 2.5 ppm in a typical spectrum for poly(isobutylene‐co‐p‐methylstyrene). The nature of these resonances were determined by preparation and characterization of specifically deuterated poly(isobutylene‐co‐p‐methylstyrene)s employing both one and two dimensional NMR techniques. The 2.8 ppm signal is assigned as the methine proton of a p‐methylstyrene incorporated between two isobutylene units (the BSB triad). The signal at 2.5 ppm is assigned to the meso‐BSS triad. Determination of these resonances allows for rapid evaluation of isolated p‐methylstyrene units (BSB triads) present in the copolymer using only 1H NMR. The utility of this technique is demonstrated by comparing BSB triad values determined by 1H and 13C NMR analysis. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1680–1686, 2000  相似文献   

4.
The CuI‐catalyzed addition of iodine to the C≡C triple bond of 3,3‐diethoxy‐1‐phenyl propyne ( 1 ) unexpectedly leads to the new cyclization products 2,3‐diiodo‐1H‐inden‐1‐one ( 2 ) and 1‐ethoxy‐2,3‐diiodo‐1H‐indene ( 3 ). Both compounds were isolated and characterized via 1H, 13C NMR (Nuclear Magnetic Resonance) spectroscopy and HRMS (High Resolution Mass Spectrometry). The molecular and crystal structures of compounds 2 and 3 were determined by single crystal X‐ray diffraction. Their crystal structures are governed by extensive halogen bonding, involving I·I and I·O interactions.  相似文献   

5.
The preparation and isolation of the first palladium dihydrogen complex is described. NMR spectroscopy reveals a very short H? H bond length, but the hydrogen molecule is activated toward heterolytic cleavage. An X‐ray crystal structure suggests that proton transfer to the tBuPCP (κ3‐2,6‐(tBu2PCH2)2C6H3) pincer ligand is possible. The basicity of the ipso‐carbon atom of the pincer ligand was investigated in a related complex.  相似文献   

6.
Archaerhodopsin‐3 (AR3) is a member of the microbial rhodopsin family of hepta‐helical transmembrane proteins, containing a covalently bound molecule of all‐trans retinal as a chromophore. It displays an absorbance band in the visible region of the solar spectrum (λmax 556 nm) and functions as a light‐driven proton pump in the archaeon Halorubrum sodomense. AR3 and its mutants are widely used in neuroscience as optogenetic neural silencers and in particular as fluorescent indicators of transmembrane potential. In this study, we investigated the effect of analogs of the native ligand all‐trans retinal A1 on the spectral properties and proton‐pumping activity of AR3 and its single mutant AR3 (F229S). While, surprisingly, the 3‐methoxyretinal A2 analog did not redshift the absorbance maximum of AR3, the analogs retinal A2 and 3‐methylamino‐16‐nor‐1,2,3,4‐didehydroretinal (MMAR) did generate active redshifted AR3 pigments. The MMAR analog pigments could even be activated by near‐infrared light. Furthermore, the MMAR pigments showed strongly enhanced fluorescence with an emission band in the near‐infrared peaking around 815 nm. We anticipate that the AR3 pigments generated in this study have widespread potential for near‐infrared exploitation as fluorescent voltage‐gated sensors in optogenetics and artificial leafs and as proton pumps in bioenergy‐based applications.  相似文献   

7.
The pathways of migration of the multiple bond in propene and propyne molecules involving the hydroxide ion were investigated by theab initio (RHF/6-31+G* and MP2/6-31+G*) methods. Stationary points corresponding to stable complexes between the molecules under study and the hydroxide ion and between corresponding carbanions and water molecule were found on the potential energy surfaces of the proton transfer reactions. In the presence of hydroxide ion, migration of the multiple bond can occur by an “intramolecular” mechanism of the proton transfer involving the proton of hydroxide ion bound in the complex with propene or propyne molecule. For the propene system, such a mechanism seems to be quite realistic and more preferable energetically than a traditional two-stage mechanism with a passage of the proton into the medium. For the system with the triple bond, an equal expenditure of energy is required to follow any mechanism (without taking into account the effects of solvation and the interaction with a cation), whereas the formation of the stable [H2C=C=CH·H2O] complex can prevent further transformations. For Part 1, see Ref. 1. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 35–41, January, 1999.  相似文献   

8.
The one‐step removal of multi‐component gases based on a single material will significantly improve the efficiency of separation processes but it is challenging, owing to the difficulty to precisely fabricate porous materials with multiple binding sites tailored for different guest molecules. Now a niobium oxide–fluoride anion‐pillared interpenetrated material ZU‐62 (NbOFFIVE‐2‐Cu‐i, NbOFFIVE=NbOF52?) is presented. It features asymmetric O/F node coordination for the simultaneous removal of trace propyne and propadiene from propylene. The narrow distribution nanospace (aperture of Site I 6.75 Å, Site II 6.94 Å, Site III 7.20 Å) derived from the special coordination geometry within ZU‐62 customized the corresponding energy‐favorable binding sites for the propyne and propadiene that enable propadiene uptake (1.74 mmol g?1) as well as excellent propyne uptake (1.87 mmol g?1) under ultra‐low pressure (5000 ppm). The multisite capture mechanism was revealed by modeling studies.  相似文献   

9.
A proposal for a redox‐linked conformational gate to proton translocation—a proton pump gate—based upon a transition‐metal redox‐switchable hemilabile ligand (RHL) system is made. Consideration of the requirements for such a system reveals copper(II ) to be the ideal metal centre. To test the proposal and, thereby, to provide an artificial proton pump gate, the copper coordination chemistry of three tris(pyridylmethyl)amine (tpa) ligands with one “leg” (PY*) substituted at the 6‐position of the pyridine ring by a dimethoxyphenyl (L1), a hydroquinone (H2L2) or a quinone (L3) substituent has been investigated. Crystal structures of sp‐[Cu(κ4N‐L1)Cl]Cl?3 H2O (sp=square pyramidal), sp‐[Cu(κ3N‐H2L2)Cl2] and tbp‐[Cu(κ4N,κO‐HL2)][PF6] (tbp=trigonal bipyramidal) have been determined. The CuI complexes [Cu(L)(MeCN)n]+ (L=L1, H2L2) display physicochemical properties consistent with a “dangling” PY* leg; from the NMR spectra, the barriers to inversion of the ligand amine donor for the CuI complexes are estimated to be within the range of about 30–45 kJ mol?1. In the CuII complexes, coordination of the PY* leg is finely balanced and critically depends on the nature of the PY* substituent and the availability of potential co‐ligand(s). For example, tbp‐[Cu(κ4N‐L1)Cl]+ reacts cleanly with Cl? ions to afford sp‐[Cu(κ3N‐L1)Cl2]; Vis/NIR spectrophotometric titrations suggest the affinity of tbp‐[Cu(κ4N‐L1)Cl]+ for Cl? ion in dichloromethane is 9.7×102 and is at least 104‐fold greater than that of tbp‐[Cu(κ4N‐L3)Cl]+. The complex sp‐[Cu(κ3N‐H2L2)Cl2] has a “dangling” PY* leg, in which an intramolecular OH(hydroquinone)???N(pyridine) hydrogen bond “ties‐up” the pyridyl nitrogen atom, and reacts with Brønsted bases to give tbp‐[Cu(κ4N,κO‐HL2)]+. Two‐electron oxidation of sp‐[Cu(κ3N‐H2L2)Cl2] is linked to loss of two protons and a conformational change, and affords tbp‐[Cu(κ4N‐L3)Cl]+. The [Cu(κ3N‐H2L2)Cl2]–[Cu(κ4N‐L3)Cl]+ system provides a first demonstration of the critical step in the proposed proton pumping cycle, namely a redox‐driven and proton‐linked conformational change. The possible biological relevance of this work to proton pumping in cytochrome c oxidase is mentioned.  相似文献   

10.
The signal amplification by reversible exchange (SABRE) approach has been used to hyperpolarise the substrates indazole and imidazole in the presence of the co‐ligand acetonitrile through the action of the precataysts [IrCl(COD)(IMes)] and [IrCl(COD)(SIMes)]. 2H‐labelled forms of these catalysts were also examined. Our comparison of the two precatalysts [IrCl(COD)(IMes)] and [IrCl(COD)(SIMes)], coupled with 2H labelling of the N‐heterocyclic carbene and associated relaxation and polarisation field variation studies, demonstrates the critical and collective role these parameters play in controlling the efficiency of signal amplification by reversible exchange. Ultimately, with imidazole, a 700‐fold1H signal gain per proton is produced at 400 MHz, whilst for indazole, a 90‐fold increase per proton is achieved. The co‐ligand acetonitrile proved to optimally exhibit a 190‐fold signal gain per proton in these measurements, with the associated studies revealing the importance the substrate plays in controlling this value. Copyright © 2017 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.  相似文献   

11.
This article completes our comprehensive understanding of the electron transport properties of our original π‐conjugated redox‐active molecular wires comprising Fe bridged by p‐phenylene linkers (tpy=2,2′:6′,2′′‐terpyridine). The Fe(tpy)2 oligomer wires comprise three types of tpy ligands: the anchor tpy ligand ( A series) makes a junction between the wire and electrode, the bridging bis‐tpy ligand ( L series) connects the Fe(tpy)2 units, and the terminal tpy ligand ( T series) possesses a redox site as a probe for the long‐range electron transport ability. Taking advantage of the precise tunability of the composition of the Fe(tpy)2 oligomer wires, thus far we investigated how A and L impacted on the electron‐transport ability. The excellent long‐range electron transport ability with ultrasmall attenuation constants (βd, 0.002 Å?1 as the minimum) depends on L significantly [Chem. Asian J. 2009 , 4, 1361], whereas A is unrelated to the βd value, but influences the zero‐distance electron‐transfer rate constant, ket0 [J. Am. Chem. Soc. 2010 , 132, 4524]. Herein we study the influence of terminal ligand T x (x=1–3). βd is independent of T , however, T3 , with a cyclometallated Ru complex as the redox site, gives rise to a ket0 value greater than T1 and T2 with ferrocene. This series of simple but definitive conclusions indicates that we have reached the stage of being able to precisely design molecular wires to attain desirable single‐molecule electron conduction.  相似文献   

12.
A newly synthesized one‐dimensional (1D) hydrogen‐bonded (H‐bonded) rhodium(II)–η5‐semiquinone complex, [Cp*Rh(η5p‐HSQ‐Me4)]PF6 ([ 1 ]PF6; Cp*=1,2,3,4,5‐pentamethylcyclopentadienyl; HSQ=semiquinone) exhibits a paraelectric–antiferroelectric second‐order phase transition at 237.1 K. Neutron and X‐ray crystal structure analyses reveal that the H‐bonded proton is disordered over two sites in the room‐temperature (RT) phase. The phase transition would arise from this proton disorder together with rotation or libration of the Cp* ring and PF6? ion. The relative permittivity εb′ along the H‐bonded chains reaches relatively high values (ca., 130) in the RT phase. The temperature dependence of 13C CP/MAS NMR spectra demonstrates that the proton is dynamically disordered in the RT phase and that the proton exchange has already occurred in the low‐temperature (LT) phase. Rate constants for the proton exchange are estimated to be 10?4–10?6 s in the temperature range of 240–270 K. DFT calculations predict that the protonation/deprotonation of [ 1 ]+ leads to interesting hapticity changes of the semiquinone ligand accompanied by reduction/oxidation by the π‐bonded rhodium fragment, producing the stable η6‐hydroquinone complex, [Cp*Rh3+6p‐H2Q‐Me4)]2+ ([ 2 ]2+), and η4‐benzoquinone complex, [Cp*Rh+4p‐BQ‐Me4)] ([ 3 ]), respectively. Possible mechanisms leading to the dielectric response are discussed on the basis of the migration of the protonic solitons comprising of [ 2 ]2+ and [ 3 ], which would be generated in the H‐bonded chain.  相似文献   

13.
A series of C2‐symmetric chiral tetra‐dentate ligands were prepared by using [4,5]‐ or [5,6]‐pinene‐fused 2,2′‐bipyridyl units that are supported across a rigid arylene–ethynylene backbone. These conformationally pre‐organised chelates support stable 1:1 metal complexes, which were fully characterised by UV/Vis, fluorescence, circular dichroism (CD), and 1H NMR spectroscopy. A careful inspection of the exciton‐coupled circular dichroism (ECCD) and 1H NMR spectra of the reaction mixture in solution, however, revealed the evolution and decay of intermediate species en route to the final 1:1 metal–ligand adduct. Consistent with this model, mass spectrometric analysis revealed the presence of multiple metal complexes in solution at high ligand‐to‐metal ratios, which were essentially unobservable by UV/Vis or fluorescence spectroscopic techniques. Comparative studies with a bi‐dentate model system have fully established the functional role of the π‐conjugated ligand skeleton that dramatically enhances the thermodynamic stability of the 1:1 complex. In addition to serving as a useful spectroscopic handle to understand the otherwise “invisible” solution dynamics of this metal–ligand assembly process, temperature‐dependent changes in the proton resonances associated with the chiral ligands allowed us to determine the activation barrier (ΔG) for the chirality switching between the thermodynamically stable but kinetically labile (P)‐ and (M)‐stereoisomers.  相似文献   

14.
A novel bidentate Schiff base ligand (HL, Nanobidentate Ferrocene based Schiff base ligand L (has one replaceable proton H)) was prepared via the condensation of 2‐amino phenol with 2‐acetyl ferrocene. The ligand was characterized using elemental analysis, mass spectrometry, infrared (IR) spectroscopy, 1proton nuclear magnetic resonance (H‐NMR) spectroscopy, scanning electron microscopy (SEM), and thermal analysis. The corresponding 1:1 metal complexes with some transition‐metal ions were additionally characterized by their elemental analysis, molar conductance, SEM, and thermogravimetric ana1ysis (TGA). The complexes had the general formula [M(L)(Cl)(H2O)3]xCl·nH2O (M = Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II)), (x = 0 for Mn(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II), x = 1 for Cr(III) and Fe(III)), (n = 1 for Cr(III), n = 3 for Mn(II) and Co(II), n = 4 for Fe(III), Ni(II), Cu(II), Zn(II), and Cd(II)). Density functional theory calculations on the HL ligand were also carried out in order to clarify molecular structures by the B31YP exchange‐correlation function. The results were subjected to molecular orbital diagram, highest occupied mo1ecu1ar orbital–lowest occupied molecular orbital, and molecular electrostatic potential calculations. The parent Schiff base and its eight metal complexes were assayed against four bacterial species (two Gram‐negative and two‐Gram positive) and four different antifungal species. The HL ligand was docked using molecular operating environment 2008 with crystal structures of oxidoreductase (1CX2), protein phosphatase of the fungus Candida albicans (5JPE), Gram(?) bacteria Escherichia coli (3T88), Gram(+) bacteria Staphylococcus aureus (3Q8U), and an androgen‐independent receptor of prostate cancer (1GS4). In order to assess cytotoxic nature of the prepared HL ligand and its complexes, the compounds were screened against the Michigan cancer foundation (MCF)‐7 breast cancer cell line, and the IC50 values of compounds were calculated.  相似文献   

15.
Reaction of a bis‐tetrazinyl pyridine pincer ligand, btzp, with a vanadium(III) reagent gives not a simple adduct but dichlorido{3‐methyl‐6‐[6‐(6‐methyl‐1,2,4,5‐tetrazin‐3‐yl‐κN2)pyridin‐2‐yl‐κN]‐1,4‐dihydro‐1,2,4,5‐tetrazin‐1‐yl‐κN1}oxidovanadium(IV) acetonitrile 2.5‐solvate, [V(C11H10N9)Cl2O]·2.5CH3CN, a species which X‐ray diffraction reveals to have one H atom added to one of the two tetrazinyl rings. This H atom was first revealed by a short intermolecular N...Cl contact in the unit cell and subsequently established, from difference maps, to be associated with a hydrogen bond. One chloride ligand has also been replaced by an oxide ligand in this synthetic reaction. This formula for the complex, [V(Hbtzp)Cl2O], leaves open the question of both ligand oxidation state and spin state. A computational study of all isomeric locations of the H atom shows the similarity of their energies, which is subject to perturbation by intermolecular hydrogen bonding found in X‐ray work on the solid state. These density functional calculations reveal that the isomer with the H atom located as found in the solid state contains a neutral radical Hbtzp ligand and tetravalent d1 V center, but that these two unpaired electrons are more stable as an open‐shell singlet and hence antiferromagnetically coupled.  相似文献   

16.
A number of enol ether‐derived diaurated species were synthesized directly from different alkynols and cationic gold complexes in the presence of a non‐nucleophilic base (proton sponge). The reaction can be easily applied for in situ generation of diaurated species from all common types of hydroalkoxylation substrates: 5‐endo, 5‐exo/6‐endo, 6‐exo/7‐endo and intermolecular types. Six examples were also synthesized in individual state as stable hexafluoroantimonate salts. Whereas diaurated species are obtained reliably from all conventional mononuclear gold catalysts, application of binuclear ones often gave diaurated species with unusual properties. The preliminary results point to complexities of behavior of binuclear gold catalysts and would require more research in future for this subclass. The formation of diaurated species from various gold‐oxo compounds (LAu)2OH+, (LAu)3O+, and LAuOH (L=phosphine ligand) was also studied. Of these three types, only (LAu)2OH+ is reactive, whereas (LAu)3O+ and LAuOH are not reactive alone but require acidic promoters to enable the reaction. These differences in reactivity were explained by ability of these compounds to generate the necessary acetylene π‐complex intermediate.  相似文献   

17.
A new Azo‐Schiff base ligand L was prepared by reaction of m‐hydroxy benzoic acid with (Schiff base B) of 3‐[2‐(1H–indol‐3‐yl)‐ethylimino]‐1.5‐dimethyl‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐ylamine. This synthesized ligand was used for complexation with different metal ions like Ni(II), Co(II), Pd(II) and Pt(IV) by using a molar ratio of ligand: metal as 1:1. Resulted compounds were characterized by NMR (1H and 13C), UV–vis spectroscopy, TGA, FT‐IR, MS, elemental analysis, magnetic moment and molar conductivity studies. The activation thermodynamic parameters, such as ΔE*, ΔH*, ΔS*, ΔG*and K are calculated from the TGA curves using Coats ‐ Redfern method. Hyper Chem‐8 program has been used to predict structural geometries of compounds in gas phase. The biological activities of Schiff base and its complexes had been tested in vitro against, two Gram positive bacteria (Bacillus subtillis and Staphylococcus aureus) and two Gram negative bacteria (Escherichia coli and Pseudomonas aeruguinosa).  相似文献   

18.
A proton‐transfer compound, 1‐phenyl­biguanidium 5‐nitro‐2,6‐dioxo‐1,2,3,6‐tetra­hydro­pyrimidin‐4‐olate monohydrate, C8H12N5+·C4H2N3O5·H2O, has been synthesized by a reaction between dilituric acid (5‐nitro‐2,4,6‐trihydroxy­pyrimi­dine, Dilit) and phenyl­biguanide (N‐phenyl­imido­carbonimidic diamide, Big). This compound cocrystallized as a 1:1 adduct, and the asymmetric unit consists of two dilituric amino–oxo planar tautomeric anions (Dilit), two monoprotonated phenyl­biguanidium cations (BigH+) and two water mol­ecules of crystallization (Z′ = 2). Protonation occurs at the N atom attached to the phenyl ring of Big as a result of the proton‐transfer process from the acidic hydr­oxy group of Dilit. In the crystal structure, the hydrated 1:1 adduct is stabilized by 25 two‐ and three‐center hydrogen bonds.  相似文献   

19.
Summary Stability constants for mixed-ligand complexes of the types [NiABH2], [NiABH] and [NiAB] formed by NiII with l-cysteine (cys), d-penicillamine (pen) or l-cysteic acid (cya) as ligand A and dl-2,3-diaminopropionic acid (dapa), dl-2,4-diaminobutyric acid (daba) or dl-ornithine (orn) as ligand B have been determined by the computerbased analysis of pH titration data obtained at 37 °C and I = 0.15 mol dm–3 (NaClO4). In the [NiABH] species, for all three secondary ligands (B), when A = pen or cya the labile proton appears to be attached to the terminal amino group of ligand B, whereas when A = cys it is not clear where the proton is located. In all the systems in the [NiABH2] species, one proton resides with the primary ligand (A) and the other with the secondary ligand (B). In the [NiAB]-type complexes, cys and pen chelate through the amino and thiolato groups, while cya binds in a glycine-like mode and the secondary ligands (B) coordinate in a terdentate manner.Author to whom all correspondence should be directed.  相似文献   

20.
The cationic cluster complexes [Ru3(μ‐H)(μ‐κ2N,C‐L1 Me)(CO)10]+ ( 1 +; HL1 Me=N‐methylpyrazinium), [Ru3(μ‐H)(μ‐κ2N,C‐L2 Me)(CO)10]+ ( 2 +; HL2 Me=N‐methylquinoxalinium), and [Ru3(μ‐H)(μ‐κ2N,C‐L3 Me)(CO)10]+ ( 3 +; HL3 Me=N‐methyl‐1,5‐naphthyridinium), which contain cationic N‐heterocyclic ligands, undergo one‐electron reduction processes to become short lived, ligand‐centered, trinuclear, radical species ( 1 – 3 ) that end in the formation of an intermolecular C? C bond between the ligands of two such radicals, thus leading to neutral hexanuclear derivatives. These dimerization processes are selective, in the sense that they only occur through the exo face of the bridging ligands of trinuclear enantiomers of the same configuration, as they only afford hexanuclear dimers with rac structures (C2 symmetry). The following are the dimeric products that have been isolated by using cobaltocene as reducing agent: [Ru6(μ‐H)26‐κ4N2,C2‐(L1 Me)2}(CO)18] ( 5 ; from 1 +), [Ru6(μ‐H)26‐κ4N2,C2‐(L2 Me)2}(CO)18] ( 6 ; from 2 +), and [Ru6(μ‐H)24‐κ8N2,C6‐(L3 Me)2}(CO)18] ( 7 ; from 3 +). The structures of the final hexanuclear products depend on the N‐heterocyclic ligand attached to the starting materials. Thus, although both trinuclear subunits of 5 and 6 are face‐capped by their bridging ligands, the coordination mode of the ligand of 5 is different from that of the ligand of 6 . The trinuclear subunits of 7 are edge‐bridged by its bridging ligand. In the presence of moisture, the reduction of 3 + with cobaltocene also affords a trinuclear derivative, [Ru3(μ‐H)(μ‐κ2N,C‐L3′ Me)(CO)10] ( 8 ), whose bridging ligand (L3′ Me) results from the formal substitution of an oxygen atom for the hydrogen atom (as a proton) that in 3 + is attached to the C6 carbon atom of its heterocyclic ligand. The results have been rationalized with the help of electrochemical measurements and DFT calculations, which have also shed light on the nature of the odd‐electron species, 1 – 3 , and on the regioselectivity of their dimerization processes. It seems that the sort of coupling reactions described herein requires cationic complexes with ligand‐based LUMOs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号