首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A detailed study on the photoreduction of the copper(II) precatalyst 1 to generate a highly reactive cuprous species for the copper(I)‐catalyzed alkyne‐azide cycloaddition (CuAAC) click reaction is presented. For the photoactive catalyst described herein, the activation is driven by a photoinduced electron transfer (PET) process harnessing a benzophenone‐like ketoprofenate chromophore as a photosensitizer, which is equally the counterion. The solvent is shown to play a major role in the CuII to CuI reduction process as the final electron source, and the influence of the solvent nature on the photoreduction efficiency has been studied. Particular attention was paid to the use of water as a potential solvent, aqueous media being particularly appealing for CuAAC processes. The ability to solubilize the copper‐tren complexes in water through the formation of inclusion complexes with β‐CDs is demonstrated. Data is also provided on the fate of the copper(I)‐tren catalytic species when reacting with O2, O2 being used to switch off the catalysis. These data show that partial oxidation of the secondary benzylamine groups of the ligand to benzylimines occurs. Preliminary results show that when prolonged irradiation times are employed a CuI to Cu0 over‐reduction process takes place, leading to the formation of copper nanoparticles (NPs). Finally, the main objective of this work being the development of photoactivable catalysts of practical value for the CuAAC, the catalytic, photolatent, and recycling properties of 1 in water and organic solvents are reported.  相似文献   

2.
The copper(I)‐catalyzed azide‐alkyne cycloaddition (CuAAC) was discovered in 2002, which has become the most remarkable example for “click chemistry” to date. In CuAAC reaction, 1‐copper(I) alkyne has been recognized to be a key intermediate. However, many contradictory experimental results for this intermediate were reported in literature. For example, only the in‐situ generated 1‐copper(I) alkyne was used, while the premade 1‐copper(I) alkyne proved to be inefficient under the standard conditions. The kinetic studies indicated that CuAAC reaction had a strict second‐order dependence on Cu(I) and the DFT studies demonstrated that 1‐copper(I) alkyne intermediate should be a dinuclear copper(I) complex. But these results were inconsistent with the structure of the premade 1‐copper(I) alkyne. Although hundreds of structurally different ligands were reported to significantly enhance the efficiency of CuAAC reaction, their functions were assigned to prevent the oxidation and the disproportionation of Cu(I) ion. Based on the investigation of the references and our works, we proposed that the in‐situ generated 1‐copper(I) alkyne in CuAAC reaction is not identical with the premade 1‐copper(I) alkyne. The ligands may play dual roles to activate the 1‐copper(I) alkyne by blocking the polymerization of the in‐situ formed 1‐copper(I) alkynes and dissociating the polymeric structures of the premade 1‐copper(I) alkynes. As a result, we first disclosed that carboxylic acids can function as such activators and a novel carboxylic acid‐catalyzed CuAAC strategy was developed, which has been proven to be the most convenient and highly efficient CuAAC method to date. Furthermore, highly efficient and regioselective methods for the syntheses of 1,4,5‐trisubstituted 1,2,3‐triazoles were developed by using the premade 1‐copper(I) alkynes as substrates, in which the novel function of the premade 1‐copper(I) alkynes as excellent dipolarophiles was first disclosed and applied. In this article, a series of works reported by our group for the in‐situ generated and the premade 1‐copper(I) alkynes in cycloadditions are reviewed.  相似文献   

3.
The copper(I)‐catalyzed azide–alkyne cycloaddition (CuAAC) reaction regiospecifically produces 1,4‐disubstituted‐1,2,3‐triazole molecules. This heterocycle formation chemistry has high tolerance to reaction conditions and substrate structures. Therefore, it has been practiced not only within, but also far beyond the area of heterocyclic chemistry. Herein, the mechanistic understanding of CuAAC is summarized, with a particular emphasis on the significance of copper/azide interactions. Our analysis concludes that the formation of the azide/copper(I) acetylide complex in the early stage of the reaction dictates the reaction rate. The subsequent triazole ring‐formation step is fast and consequently possibly kinetically invisible. Therefore, structures of substrates and copper catalysts, as well as other reaction variables that are conducive to the formation of the copper/alkyne/azide ternary complex predisposed for cycloaddition would result in highly efficient CuAAC reactions. Specifically, terminal alkynes with relatively low pKa values and an inclination to engage in π‐backbonding with copper(I), azides with ancillary copper‐binding ligands (aka chelating azides), and copper catalysts that resist aggregation, balance redox activity with Lewis acidity, and allow for dinuclear cooperative catalysis are favored in CuAAC reactions. Brief discussions on the mechanistic aspects of internal alkyne‐involved CuAAC reactions are also included, based on the relatively limited data that are available at this point.  相似文献   

4.
Supramolecular encapsulation is known to alter chemical properties of guest molecules. We have applied this strategy of molecular encapsulation to temporally control the catalytic activity of a stable copper(I)–carbene catalyst. Encapsulation of the copper(I)–carbene catalyst by the supramolecular host cucurbit[7]uril (CB[7]) resulted in the complete inactivation of a copper‐catalyzed alkyne–azide cycloaddition (CuAAC) reaction. The addition of a chemical signal achieved the near instantaneous activation of the catalyst, by releasing the catalyst from the inhibited CB[7] catalyst complex. To broaden the scope of our on‐demand CuAAC reaction, we demonstrated the protein labeling of vinculin with the copper(I)–carbene catalyst, to inhibit its activity by encapsulation with CB[7] and to initiate labeling at any moment by adding a specific signal molecule. Ultimately, this strategy allows for temporal control over copper‐catalyzed click chemistry, on small molecules as well as protein targets.  相似文献   

5.
By using a novel, simple, and convenient synthetic route, enantiopure 6‐ethynyl‐BINOL (BINOL=1,1‐binaphthol) was synthesized and anchored to an azidomethylpolystyrene resin through a copper‐catalyzed alkyne–azide cycloaddition (CuAAC) reaction. The polystyrene (PS)‐supported BINOL ligand was converted into its diisopropoxytitanium derivative in situ and used as a heterogeneous catalyst in the asymmetric allylation of ketones. The catalyst showed good activity and excellent enantioselectivity, typically matching the results obtained in the corresponding homogeneous reaction. The allylation reaction mixture could be submitted to epoxidation by simple treatment with tert‐butyl hydroperoxide (TBHP), and the tandem asymmetric allylation epoxidation process led to a highly enantioenriched epoxy alcohol with two adjacent quaternary centers as a single diastereomer. A tandem asymmetric allylation/Pauson–Khand reaction was also performed, involving simple treatment of the allylation reaction mixture with Co2(CO)8/N‐methyl morpholine N‐oxide. This cascade process resulted in the formation of two diastereomeric tricyclic enones in high yields and enantioselectivities.  相似文献   

6.
瞿志荣  熊仁根 《中国化学》2008,26(2):239-242
在加热条件下,手性相转移催化剂氯化- N -(4-乙烯基苄基)辛可尼定(L1)与氯化铜在2-丁醇中反应,可得到一个单一手性的二价铜单分子配合物 N -(4-乙烯基苄基)辛可尼定三氯化铜(1)。配合物(1)和配体(L1)都可用于催化 N -(二苯基亚甲基)氨基乙酸叔丁基酯(3)烷基化反应,催化结果表明:使用配合物N-(4-乙烯基苄基)辛可尼定三氯化铜的反应对映体选择性比使用配体的更高,配合物催化能力的提高可能与配合物中喹啉环的N原子与铜配位、分子刚性增加有关。  相似文献   

7.
The copper(I)‐catalyzed azide–alkyne cycloaddition (CuAAC) reaction is used to synthesize complex polymer architectures. In this work, we demonstrate the control of this reaction at 25 °C between polystyrene (PSTY) chains through modulating the catalytic activity by varying the combinations of copper source (i.e., Cu(I)Br or copper wire), ligand (PMDETA and/or triazole ligand), and solvent (toluene or DMF). The fastest rate of CuAAC was found using Cu(I)Br/PMDETA ligand in toluene, reaching near full conversion after 15 min at 25 °C. For the same catalysts system, DMF also gave fast rates of “click” (95% conversion in 25 min). Cu(0) wire in toluene gave a conversion of 98% after 600 min, a much higher rate than that observed for the same catalyst system used in DMF. When the PSTY had a chemically bound triazole ring close to the site of reaction, the rate of CuAAC in toluene increased significantly, 97% in 180 min at 25 °C, in agreement with our previously published results. This suggests that rapid rates can be obtained using copper wire and will have direct applications to the synthesis of compound where air, removal of copper, and reuse of the copper catalyst are required. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
A safe, efficient, and improved procedure for the regioselective synthesis of 1‐(2‐hydroxyethyl)‐1H‐1,2,3‐triazole derivatives under ambient conditions is described. Terminal alkynes reacted with oxiranes and NaN3 in the presence of a copper(I) catalyst, which is prepared by in situ reduction of the copper(II) complex 4 with ascorbic acid, in H2O. The regioselective reactions exclusively gave the corresponding 1,4‐disubstituted 1H‐1,2,3‐triazoles in good to excellent yields. This procedure avoids the handling of organic azides as they are generated in situ, making this already powerful click process even more user‐friendly and safe. The remarkable features of this protocol are high yields, very short reaction times, a cleaner reaction profile in an environmentally benign solvent (H2O), its straightforwardness, and the use of nontoxic catalysts. Furthermore, the catalyst could be recovered and recycled by simple filtration of the reaction mixture and reused for ten consecutive trials without significant loss of catalytic activity. No metal‐complex leaching was observed after the consecutive catalytic reactions.  相似文献   

9.
We report here a simple and universal synthetic pathway covering triple click reactions, Diels–Alder, copper‐catalyzed azide–alkyne cycloaddition (CuAAC), and nitroxide radical coupling (NRC), to prepare well‐defined graft copolymers with V‐shaped side chains. The Diels–Alder click reaction between the furan protected‐maleimide‐terminated poly(ethylene glycol) (PEG) and a trifunctional core ( 1 ) carrying an anthracene, alkyne, and bromide was carried out to yield the corresponding α‐alkyne‐ and α‐bromide‐terminated PEG (PEG‐alkyne/Br) in toluene at 110 °C. Subsequently, the polystyrene or polyoxanorbornene with pendant azide functionality as a main backbone is reacted with the PEG‐alkyne/Br and 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO)‐terminated poly(ε‐caprolactone) using the CuAAC and NRC reactions in a one‐pot fashion in N,N′‐dimethylformamide at room temperature to result in the target V‐shaped graft copolymers. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4667–4674  相似文献   

10.
In the search for establishing a clickable copper‐catalysed (3 + 2) Huisgen azide–alkyne cycloaddition (CuAAC) reaction under strict conditions, in particular in terms of preventing the presence of copper particles/traces in reaction products and using an environmentally benign medium such as water, we describe here the synthesis of an aminomethyl polystyrene‐supported copper(I) catalyst (Cu(I)‐AMPS) and its characterization by means of Fourier transform infrared and energy‐dispersive X‐ray spectroscopies and scanning electron microscopy. Cu(I)‐AMPS was found to be highly active in the CuAAC reaction of various organic azides with alkynes affording the corresponding 1,4‐disubstituted 1,2,3‐triazoles in a regioselective manner in air at room temperature and using water as solvent. The insolubility and/or partial solubility of the organic azide and alkyne precursors as well as the heterogeneous Cu(I)‐AMPS catalytic system points to the occurrence of the cycloaddition at the organic–water interface ‘on water’ affording quantitative yields of water‐insoluble 1,2,3‐triazoles. A mechanistic study was performed using density functional theory aiming at explaining the observed reactivity and selectivity of the Cu (I)‐AMPS catalyst in CuAAC reactions.  相似文献   

11.
The concept of chelation‐assisted copper catalysis was employed for the development of new azides that display unprecedented reactivity in the copper(I)‐catalyzed azide–alkyne [3+2] cycloaddition (CuAAC) reaction. Azides that bear strong copper‐chelating moieties were synthesized; these functional groups allow the formation of azide copper complexes that react almost instantaneously with alkynes under diluted conditions. Efficient ligation occurred at low concentration and in complex media with only one equivalent of copper, which improves the biocompatibility of the CuAAC reaction. Furthermore, such a click reaction allowed the localization of a bioactive compound inside living cells by fluorescence measurements.  相似文献   

12.
In this paper, the synthesis and characterization of a series of latent polymeric bis(N‐heterocyclic carbene) (NHC) copper(I) complexes is reported, which can be activated for the copper(I)‐catalyzed azide/alkyne cycloaddition (CuAAC) via ultrasound. To prove the influence of chain length and nature of the polymer towards the activation, poly(isobutylene) (PIB), poly(styrene) (PS) and poly(tetrahydrofuran) (PTHF) are synthesized via living polymerization techniques (LCCP, ATRP, CROP) obtaining different chain lengths (from 2500 to 9000 g/mol), followed by quaternization with N‐methylimidazole, generating the corresponding N‐methylimidazolium‐telechelic polymers. The deprotonation of these macroligands via strong bases like sodium tert‐butoxide (NaOtBu) or potassium hexamethyldisilazide (KHMDS) yields the free N‐heterocyclic carbenes (NHCs), which are used to coordinate to tetrakis(acetonitrile)copper(I) hexafluorophosphate, forming the final polymer‐based mono‐ and bis(N‐methylimidazole‐2‐ylidene) copper(I)X complexes. The structural proof of these complexes is accomplished via 1H‐NMR spectroscopy, MALDI‐TOF‐MS and GPC‐techniques. The activation of the copper(I) biscarbene catalysts by ultrasound is studied by GPC, revealing the cleavage of one shielding NHC‐ligand. The initial catalytic latency and the via ultrasound introduced catalytic activation is successfully demonstrated monitoring a CuAAC “click” reaction of benzyl azide and phenylacetylene by in situ 1H‐NMR spectroscopy introducing thus “click” conversions up to 97%. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3893–3907  相似文献   

13.
The development of a highly active solid‐phase catechol–copper network catalyst for direct aldol reaction is described. The catalyst was prepared from an alkyl‐chain‐linked bis(catechol) and a copper(II) complex. The direct aldol reaction between carbonyl compounds (aldehydes and ketones) and methyl isocyanoacetate was carried out using 0.1–1 mol % [Cu] catalyst to give the corresponding oxazolines at yields of up to 99 % and a trans/cis ratio of >99:1. The catalyst was reused with no loss of catalytic activity. A plausible reaction pathway is also described.  相似文献   

14.
In this study, we synthesized some new derivatives of N‐(4‐amino‐5‐cyano‐6‐(trichloromethyl)pyridin‐2‐yl)alkyl sulfonamides in the presence of a copper catalyst. A one‐pot reaction system was used, and four components participated in the process. These four components were sulfonyl azides, terminal alkynes, malononitrile, and trichloroacetonitrile. The reaction rate was increased by the use of copper (I) iodide as the catalyst and tetrahydrofuran was used as the solvent. We achieved the final compounds in moderate to good yields. Moreover, we converted “NH2” side group to N‐aryl by the use of various aryl halide analogs in acetonitrile as the solvent, under mild reaction and at the room temperature.  相似文献   

15.
Bis(clickable) mesoporous silica nanospheres (ca. 100 nm) were obtained by the co‐condensation of TEOS with variable amounts (2–5 % each) of two clickable organosilanes in the presence of CTAB. Such nanoparticles could be easily functionalized with two independent functions using the copper‐catalyzed alkyne‐azide cycloaddition (CuAAC) reaction to transform them into nanomachines bearing cancer cell targeting ligands with the ability to deliver drugs on‐demand. The active targeting was made possible after anchoring folic acid by CuAAC click reaction, whereas the controlled delivery was performed by clicked azobenzene fragments. Indeed, the azobenzene groups are able to obstruct the pores of the nanoparticles in the dark whereas upon irradiation in the UV or in the blue range, their trans‐to‐cis photoisomerization provokes disorder in the pores, enabling the delivery of the cargo molecules. The on‐command delivery was proven in solution by dye release experiments, and in vitro by doxorubicin delivery. The added value of the folic acid ligand was clearly evidenced by the difference of cell killing induced by doxorubicin‐loaded nanoparticles under blue irradiation, depending on whether the particles featured the clicked folic acid ligand or not.  相似文献   

16.
Copper‐catalyzed controlled/living radical polymerization (LRP) of styrene (St) was conducted using the silica gel‐supported CuCl2/N,N,N′,N′,N″‐pentamethyldiethylenetriamine (SG‐CuCl2/PMDETA) complex as catalyst at 110 °C in the presence of a definite amount of air. This novel approach is based on in situ generation and regeneration of Cu(I) via electron transfer reaction between phenols and Cu(II). Sodium phenoxide or p‐methoxyphenol was used as a reducing agent of Cu(II) complexes in LRP. The number–average molecular weight, Mn,GPC, increases linearly with monomer conversion and agrees well with the theoretical values up to 85% conversion The molecular weight distribution, Mw/Mn, decreases as the conversion increases and reaches values below 1.2. The catalyst was recovered in aerobic condition and reused in copper‐catalyzed LRP of St. For the second run, the number–average molecular weights increased with monomer conversion and the polydispersities decreased as the polymerization proceeded and reached to the value <1.3 at 81% conversion. The recycled catalyst retained 90% of its original activity in the subsequent polymerization. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 77–87, 2006  相似文献   

17.
The convergence of supramolecular chemistry and polymer science offers many powerful approaches for building functional nanostructures with well‐defined dynamic behaviour. Herein we report the efficient “click” synthesis and self‐assembly of AB2‐ and AB4‐type multitopic porphyrin–polymer conjugates (PPCs). PPCs were prepared using the copper(I)‐catalysed azide–alkyne cycloaddition (CuAAC) reaction, and consisted of linear polystyrene, poly(butyl acrylate), or poly(tert‐butyl acrylate) arms attached to a zinc(II) porphyrin core via triazole linkages. We exploit the presence of the triazole groups obtained from CuAAC coupling to direct the self‐assembly of the PPCs into short oligomers (2–6 units in length) via intermolecular porphyrinatozinc–triazole coordination. By altering the length and grafting density of the polymer arms, we demonstrate that the association constant of the porphyrinatozinc–triazole complex can be systematically tuned over two orders of magnitude. Self‐assembly of the PPCs also resulted in a 6 K increase in the glass transition temperature of the bulk material compared to a non‐assembling PPC. The modular synthesis and tunable self‐assembly of the triazole‐linked PPCs thus represents a powerful supramolecular platform for building functional nanostructured materials.  相似文献   

18.
The effect of additional Cu(II) ions on the rate of transformation of S‐(2‐oxotetrahydrofuran‐3‐yl)‐N‐(4‐methoxyphenyl)isothiouronium bromide ( 1 ) into 5‐(2‐hydroxyethyl)‐2‐[(4‐methoxyphenyl)imino]‐1,3‐thiazolidin‐4‐one ( 2 ) has been studied in aqueous buffer solutions. The reaction acceleration in acetate buffers is caused by the formation of a relatively weakly bonded complex (Kc = 600 L·mol?1) of substrate with copper(II) acetate in which the Cu(II) ion acts as a Lewis acid coordinating the carbonyl oxygen and facilitating the intramolecular attack, leading to the formation of intermediate T±. The formation of the complex of copper(II) acetate with free isothiourea in the fast preequilibrium (Kc) is followed by the rate‐limiting transformation (kCu) of this complex. At the high concentrations of the acetate anions, the reaction is retarded by the competitive reaction of these ions with copper(II) acetate to give an unreactive complex [Cu(OAc)4]2?. The influence of Cu(II) ions on the stability of reaction intermediates and the leaving group ability of the alkoxide‐leaving group compared to the Cu(II)‐uncatalyzed reaction is also discussed.  相似文献   

19.
A highly efficient asymmetric Diels–Alder/[3,3] sigmatropic rearrangement reaction of methyleneindolinones with 1‐thiocyanatobutadienes has been realized by using a chiral N,N′‐dioxide/nickel(II) complex as the catalyst. A range of cyclohexenyl isothiocyanates were synthesized in high yields with excellent diastereo‐ and enantioselectivities. Based on mechanistic studies, a catalytic cycle with possible transition‐state models were proposed to explain the process.  相似文献   

20.
Tris‐(benzyltriazolylmethyl)amine (TBTA) has been immobilized onto a styrenic monomer and subsequently copolymerized with N‐isopropyl acrylamide (NIPAM) to afford catalytically active thermo‐responsive copolymers for copper assisted click chemistry. P(TBTA‐co‐NIPAM) copolymers were synthesized with incorporation of between 2 and 10 ligand units per chain and tuneable molecular weight (28–148 kDa). A combination of 1H NMR spectroscopy, size exclusion chromatography (SEC) and elemental analysis (EA) confirmed the controlled synthesis of these polymers and allowed for quantification of the degree of TBTA‐functionalized monomer incorporation. After loading with copper(I) bromide, this homogeneous catalyst system was added to a water/ethyl acetate two‐phase system. Using this biphasic system aqueous click reactions could be performed at room temperature, while organic click chemistry could be performed above the cloud point temperature of the catalyst system. The polymer catalyst system could be regenerated via extraction by making use of its lower critical solution temperature (LCST)‐behavior, and then reused for further copper(I) catalyzed azide‐alkyne cycloaddition (CuAAC) reactions. While a reduced catalytic activity is observed as a result of copper leaching in aqueous click reactions, the recycling experiments in the organic phase demonstrated that this copolymer supported system allows for efficient recycling and reuse. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号