首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complexation studies of the dinucleating ligand H3L (H3L=2‐{[bis(pyridin‐2‐ylmethyl)amino]methyl}‐6‐{[bis(6‐pivaloylamidopyridin‐2‐ylmethyl)amino]methyl}‐4‐methylphenol), with metal‐binding sites A and B, which both provide four donors to a metal ion; a tertiary amine; two pyridines (substituted with amide hydrogen‐bond donors in site B), and a bridging phenolate, with ZnII, CuII, and GaIII are reported. The titration of H3L with the three metal ions in solution was monitored by NMR spectroscopy or EPR and UV/Vis/near‐IR spectroscopy, as well as by ESI‐MS to analyze the selectivity of the two metal‐ion sites A and B of this model ligand for metallophosphatases; the spectroscopic assignments are supported by X‐ray crystallography results. The first ZnII ion coordinates to site A with unsubstituted pyridine donors and, upon addition of a second equivalent of ZnII, this coordinates to the sterically less accessible site B. From a similar titration with GaIII, it emerges that only a mononuclear complex is obtained, with the GaIII center coordinated to site A. When one equivalent of GaIII is reacted with the mononuclear ZnII complex, ZnII is forced by GaIII to exchange the site; this results in a dinuclear complex with GaIII in site A and ZnII in site B. With CuII, two isomers are observed: one with and the other without a bridging phenolate; these differ significantly in their spectroscopic and magnetic properties.  相似文献   

2.
Three transition‐metal–carbonyl complexes [V( L )(CO)3(Cp)] ( 1 ), [Co( L )(CO)(Cp)] ( 2 ), and [Co( L2 )(CO)3]+[CoCO)4]? ( 3 ), each containing stable N‐heterocyclic‐chlorosilylene ligands ( L ; L =PhC(NtBu)2SiCl) were synthesized from [V(CO)4(Cp)], [Co(CO)2(Cp)], and Co2(CO)8, respectively. Complexes 1 , 2 , 3 were characterized by NMR and IR spectroscopy, EI‐MS spectrometry, and elemental analysis. The molecular structures of compounds 1 , 2 , 3 were determined by single‐crystal X‐ray diffraction.  相似文献   

3.
4.
Reaction of the donor‐stabilized silylene 1 (which is three‐coordinate in the solid state and four‐coordinate in solution) with [HMCp(CO)3] (M=Mo, W; Cp=cyclopentadienyl) leads to the cationic five‐coordinate silicon(IV) complexes 2 and 3 , respectively, and reaction of 1 with CH3COOH yields the neutral six‐coordinate silicon(IV) complex 4 . Compounds 2 – 4 were structurally characterized by crystal structure analyses and multinuclear NMR spectroscopic studies in the solid state and in solution. The formation of 2 – 4 can be formally described in terms of a Brønsted acid/base reaction, coupled with a redox process (SiII→SiIV, H+→H?).  相似文献   

5.
The reactivity of the hydrolysis product of hexaphenylcarbodiphosphorane, PPh3CHP(O)Ph2, towards different soft Lewis acids, such as CuI and Ag[BF4] are reported. While CuI exclusively binds at the ylidic carbon atom, reaction of the silver cation in CH2Cl2 leads to proton abstraction from the solvent to give the cation [PPh3CH2P(O)Ph2]+. Surprisingly, Ag+ replaces the methyl group of [PPh3CHMeP(O)Ph2]+ to produce a dimeric complex, in which Ag+ is coordinated to C and O forming an eight membered ring. The compounds were characterized by spectroscopic methods and X‐ray diffraction.  相似文献   

6.
The one‐dimensional (1D) transition‐metal oxide MoO3 belt is synthesized and characterized with X‐ray diffraction, scanning electron microscopy, and Raman spectroscopy. Charge‐transfer‐(CT) enhanced Raman scattering of 4‐mercaptobenzoic acid (4‐MBA) on a 1D MoO3 belt was investigated experimentally and theoretically. The chemical enhancement of surface‐enhanced Raman scattering (SERS) of 4‐MBA on the MoO3 belt by CT is in the order of 103. The SERS of 4‐MBA was investigated theoretically by using a quantum chemical method. The remote SERS of 4‐MBA along the 1D MoO3 belt (the light excitation to one side of the MoO3 belt, and the SERS spectrum is collected on the other side of the MoO3 belt) is also shown experimentally, which provides potential applications of SERS. The incident polarization dependence of remote SERS spectra has also been investigated experimentally.  相似文献   

7.
8.
Y not? A unique, three‐coordinate Y‐shaped bis(silyl)platinum(II) complex was isolated and characterized (see structure; C light gray, N blue, Si pink, Pt dark gray). DFT studies on a model system shed light on the nature of this unusual coordination mode for platinum(II).

  相似文献   


9.
Coordination of an ambiphilic diphosphine-borane (DPB) ligand to the RhCl(CO) fragment affords two isomeric complexes. According to X-ray diffraction analysis, each complex adopts a square-pyramidal geometry with trans coordination of the two phosphine buttresses and axial RhB contacts, but the two differ in the relative orientations around the rhodium and boron centres. DFT calculations on the actual complexes provide insight into the influence of the pi-accepting CO co-ligand, compared with previously reported complexes [Rh(mu-Cl)(dpb)]2 and [RhCl(dmap)(dpb)]. In addition, comparison of the nu(CO) frequency of [RhCl(CO)(dpb)] with that of the related borane-free complex [RhCl(CO)(iPr2PPh)2] substantiates the significant electron-withdrawing effect that the sigma-accepting borane moiety exerts on the metal. Valence isoelectronic [PtCl2(dpb)] and [PdCl2(dpb)] complexes have also been prepared and characterized spectroscopically and structurally. The pronounced influence of the transition metal on the magnitude of the M-->B interaction is highlighted by geometric considerations and NBO analyses.  相似文献   

10.
11.
New tricks for an old dog : Calixpyrroles bind anions efficiently and can be transformed into transition‐metal complexes only under forcing conditions. Reducing the macrocycle creates a ligand that easily forms classical Werner complexes with copper, nickel, and palladium ions. The metal complexes present an array of four directed hydrogen bonds, which specifically bind the counterions (see picture; blue N, white H, green Cl, red Cu, Ni, or Pd).

  相似文献   


12.
13.
The reaction of 4‐(1,2,4‐triazol‐4‐yl)ethanesulfonate ( L ) with Zn2+, Cu2+, Ni2+, Co2+, and Fe2+ gave a series of analogous neutral trinuclear complexes with the formula [M3(μ‐ L )6(H2O)6] ( 1 – 5 ). These compounds were characterized by single‐crystal X‐ray diffraction, thermogravimetry, and elemental analysis. The magnetic properties of compounds 2 – 5 were studied. Complexes 2 – 4 show weak antiferromagnetic superexchange, with J values of ?0.33 ( 2 ), ?9.56 ( 3 ), and ?4.50 cm?1 ( 4 ) (exchange Hamiltonian H=?2 J (S1S2+S2S3)). Compound 5 shows two additional crystallographic phases ( 5 b and 5 c ) that can be obtained by dehydration and/or thermal treatment. These three phases exhibit distinct magnetic behavior. The Fe2+ centers in 5 are in high‐spin (HS) configuration at room temperature, with the central one exhibiting a non‐cooperative gradual spin transition below 250 K with T1/2=150 K. In 5 b , the central Fe2+ stays in its low‐spin (LS) state at room temperature, and cooperative spin transition occurs at higher temperatures and with the appearance of memory effect (T1/2↑=357 K and T1/2↓=343 K). In the case of 5 c , all iron centers remain in their HS configuration down to very low temperatures, with weak antiferromagnetic coupling (J=?1.16 cm?1). Compound 5 b exhibits spin transition with memory effect at the highest temperature reported, which matches the remarkable features of coordination polymers.  相似文献   

14.
By employing diethyl 1,3‐propylidenebis(4‐oxybenzoate) as a precursor, the new three‐dimensional metal‐organic framework [La2L2(HL)2]n [L = 1,3‐propylidenebis(4‐oxybenzoate)] was prepared and characterized by single‐crystal X‐ray diffraction analysis, elemental analysis, infrared spectroscopy, and thermogravimetric analysis. The compound crystallizes in the triclinic space group P , with cell parameters: a = 8.299 (2) Å, b = 14.127 (3) Å, c = 14.520 (3) Å, α = 112.43 (3) °, β = 103.10 (3) °, γ = 95.28 (3)°, V = 1502.2 (5) Å3, and Z = 1. Under hydrothermal reaction conditions, two ester groups of the ligand hydrolyzed into carboxylate groups. The carboxylate groups coordinated in situ to metal ions to form the 3D coordination polymer. It exhibits a 10.4 × 10.6 Å rhombic channel along the [011] direction. On the basis of the results of TG analysis, the structure is thermally stable up to ≈? 400 °C.  相似文献   

15.
The first complex with benzilbis(thiosemicarbazone) LH6 acting only as a bridge between two metallic centres through the sulfur atoms, was obtained from the reaction with methylmercury chloride. This complex shows a 1:2 ligand : mercury ratio and has been spectroscopically characterized and recrystallized in toluene. The ligand acts as a dianion, with an intermediate situation between cis and trans dispositions, and it is bonded to both methylmercury moieties through the sulfur atoms, giving a binuclear complex with linear CS coordination for the mercury atoms.  相似文献   

16.
17.
18.
Reaction of 2, 4, 6‐tri‐tert‐butylphenol ( 1 ) with di‐n‐butylmagnesium in the molar ratio 1:1 allows the synthesis of {(nBu)Mg(μ‐OR)2Mg(nBu)} ( 2 ) (R = 2, 4, 6‐tBu3C6H2), which reacts with excess 1 to give the homoleptic alcoholate complex {(RO)Mg(μ‐OR)2Mg(OR)} ( 3 ) (R = 2, 4, 6‐tBu3C6H2). The structures of 2 and 3 were determined by X‐ray crystallography.  相似文献   

19.
Environmentally sustainable hydrogen‐evolving electrocatalysts are key in a renewable fuel economy, and ligand‐based proton and electron transfer could circumvent the need for precious metal ions in electrocatalytic H2 production. Herein, we show that electrocatalytic generation of H2 by a redox‐active ligand complex of Al3+ occurs at ?1.16 V vs. SCE (500 mV overpotential).  相似文献   

20.
Tetra(N,N′‐tetramethylurea)‐beryllium‐triiodide, [Be(TMU)4](I3)2 ( 1 ) was prepared from beryllium powder and iodine in N,N′‐tetramethylurea to give orange crystals, which were characterized by X‐ray diffraction and IR spectroscopy. Compound 1 crystallizes monoclinically in the space group C2/c with four formula units per unit cell. Lattice dimensions at 100(2) K: a = 1906.6(1), b = 1185.7(1), c = 1895.0(1) pm, β = 113.60(1) °, R1 = 0.0291. The structure of 1 consists of distorted tetrahedral cations [Be(TMU)4]2+ with Be–O bond lengths of 162.5(5) and 160.8(5) pm and triiodide ions without site symmetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号