首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Efficient cyclization of 1‐(indol‐3‐yl)‐3‐alkyn‐1‐ols in the presence of a cationic gold(I) complex, leading to annulated or specific substituted carbazoles, was observed. Depending on the reaction conditions and substitution pattern, divergent reaction pathways were discovered, furnishing diversified carbazole structures. Cycloalkyl‐annulated [b]carbazoles are obtained through 1,2‐alkyl migration of the metal‐carbene intermediates; cycloalkyl‐annulated [a]carbazoles are formed through a Wagner–Meerwein‐type 1,2‐alkyl shift; carbazole ethers are constructed through ring‐opening of the cyclopropyl group by nucleophilic attack of water or an alcohol.  相似文献   

2.
Temperature‐selective radical generation from a newly designed alkyl diiodide (I?R2?R1?I) was studied. R1?I and I?R2 had different reactivities for generating alkyl radicals in the presence of a tetraoctylammonium iodide (ONI) catalyst. Taking advantage of the temperature selectivity, we used the alkyl diiodide as a dual initiator in ONI‐catalyzed living radical polymerization to uniquely synthesize CABC non‐symmetric multi‐block copolymers. Because of their non‐symmetric structure, CABC multi‐block copolymers form unique assemblies, that is, Janus‐type particles with hetero‐segment coronas and flower‐like particles with hetero‐segment petals.  相似文献   

3.
Ethyl 3-alkyl-4-hydroxy-2-thioxothiazolidine-4-carboxylates were prepared in excellent yields from the reaction of corresponding primary amines with carbon disulfide and ethyl 3-bromo-2-oxopropanoate in the presence of anhydrous potassium phosphate in DMF at room temperature within 1 h. The structures of the highly functionalized products were corroborated spectroscopically (IR, ^1H NMR, ^13C NMR, EI-MS) and by elemental analyses. A plausible mechanism for such type of cyclization was proposed.  相似文献   

4.
Treatment of N,N‐chelated germylene [(iPr)2NB(N‐2,6‐Me2C6H3)2]Ge ( 1 ) with ferrocenyl alkynes containing carbonyl functionalities, FcC≡CC(O)R, resulted in [2+2+2] cyclization and formation of the respective ferrocenylated 3‐Fc‐4‐C(O)R‐1,2‐digermacyclobut‐3‐enes 2 – 4 [R = Me ( 2 ), OEt ( 3 ) and NMe2 ( 4 )] bearing intact carbonyl substituents. In contrast, the reaction between 1 and PhC(O)C≡CC(O)Ph led to activation of both C≡C and C=O bonds producing bicyclic compound containing two five‐membered 1‐germa‐2‐oxacyclopent‐3‐ene rings sharing one C–C bond, 4,8‐diphenyl‐3,7‐dioxa‐2,6‐digermabicyclo[3.3.0]octa‐4,8‐diene ( 5 ). With N‐methylmaleimide containing an analogous C(O)CH=CHC(O) fragment, germylene 1 reacted under [2+2+2] cyclization involving the C=C double bond, producing 1,2‐digermacyclobutane 6 with unchanged carbonyl moieties. Finally, 1 selectively added to the terminal double bond in allenes CH2=C=CRR′ giving rise to 3‐(=CRR′)‐1,2‐digermacyclobutanes [R/R′ = Me/Me ( 7 ), H/OMe ( 8 )] bearing an exo‐C=C double bond. All compounds were characterized by 1H, 13C{1H} NMR, IR and Raman spectroscopy and the molecular structures of 3 , 4 , 5 , and 8 were established by single‐crystal X‐ray diffraction analysis. The redox behavior of ferrocenylated derivatives 2 – 4 was studied by cyclic voltammetry.  相似文献   

5.
A new total synthesis of the natural carbazole murrayanine ( 1 ) was developed by using the 4,5‐dimethyleneoxazolidin‐2‐one 12 as starting material. The latter underwent a highly regioselective Diels–Alder cycloaddition with acrylaldehyde (=prop‐2‐enal; 13 ) to give adduct 14 (Scheme 3). Conversion of this adduct into diarylamine derivative 9 was carried out via hydrolysis and methylation (Scheme 4). Differing from our previous synthesis, in which such a diarylamine derivative was transformed into 1 by a PdII‐stoichiometric cyclization, this new approach comprised an improved cyclization through a more efficient Pd0‐catalyzed intramolecular diaryl coupling which was applied to 9 , thus obtaining the natural carbazole 1 in a higher overall yield.  相似文献   

6.
Novel 2‐alkylcarbamato/thiocarbama‐to‐2,3‐dihydro‐5‐propylthio‐1H‐1,3,2‐benzodiazaphos‐phole 2‐oxides ( 4a–J ) were synthesized by cyclization of 4‐propylthio‐1,2‐phenylenediamine ( 3 ) with the corresponding dichlorophosphoryl carbamates/thiocarbamates ( 2a–J ) that were obtained by the addition of alcohols/thiols to isocyanatophosphoryl dichloride ( 1 ). The structures of the title compounds were confirmed by the 1H, 13C, 31P NMR, and mass spectral studies. Some of these products were found to possess significant antimicrobial activity. © 2000 John Wiley & Sons, Inc. Heteroatom Chem 11:336–340, 2000  相似文献   

7.
Ni‐catalyzed cross‐coupling of unactivated secondary alkyl halides with alkylboranes provides an efficient way to construct alkyl–alkyl bonds. The mechanism of this reaction with the Ni/ L1 ( L1 =transN,N′‐dimethyl‐1,2‐cyclohexanediamine) system was examined for the first time by using theoretical calculations. The feasible mechanism was found to involve a NiI–NiIII catalytic cycle with three main steps: transmetalation of [NiI( L1 )X] (X=Cl, Br) with 9‐borabicyclo[3.3.1]nonane (9‐BBN)R1 to produce [NiI( L1 )(R1)], oxidative addition of R2X with [NiI( L1 )(R1)] to produce [NiIII( L1 )(R1)(R2)X] through a radical pathway, and C? C reductive elimination to generate the product and [NiI( L1 )X]. The transmetalation step is rate‐determining for both primary and secondary alkyl bromides. KOiBu decreases the activation barrier of the transmetalation step by forming a potassium alkyl boronate salt with alkyl borane. Tertiary alkyl halides are not reactive because the activation barrier of reductive elimination is too high (+34.7 kcal mol?1). On the other hand, the cross‐coupling of alkyl chlorides can be catalyzed by Ni/ L2 ( L2 =transN,N′‐dimethyl‐1,2‐diphenylethane‐1,2‐diamine) because the activation barrier of transmetalation with L2 is lower than that with L1 . Importantly, the Ni0–NiII catalytic cycle is not favored in the present systems because reductive elimination from both singlet and triplet [NiII( L1 )(R1)(R2)] is very difficult.  相似文献   

8.
The synthesis of a novel series of twelve 4‐(trihalomethyl)dipyrimidin‐2‐ylamines, from the cyclo‐condensation reaction of 4‐(trichloromethyl)‐2‐guanidinopyrimidine, with β‐alkoxyvinyl trihalomethyl ketones, of general formula: X3C‐C(O)‐C(R2)=C(R1)‐OR, where: X = F, Cl; R = Me, Et, ‐(CH2)2‐, ‐(CH2)3‐; R1 = H, Me; R2 = H, Me, ‐(CH2)2‐, ‐(CH2)3‐, is reported. The reactions were carried out in acetonitrile under reflux for 16 hours, leading to the dipyrimidin‐2‐ylamines in 65‐90% yield. Depending on the substituents of the vinyl ketone, tetrahydropyrimidines or aromatic pyrimidine rings were obtained from the cyclization reaction. When X = Cl, elimination of the trichloromethyl group was observed during the cyclization step. The structure of 4‐(trihalomethyl)dipyrimidin‐2‐ylamines was studied in detail by 1H‐, 13C‐ and 2D‐nmr spectroscopy.  相似文献   

9.
A series of 2‐alkynyl carbonyl compounds that contain a cyclopentene ring or a heterocycle can be transformed into various fused dihydrobenzofurans and tetrahydrofuro[2,3‐c]pyridines by means of a 1,2‐alkyl migration process. Both of these reactions proceed with excellent regioselectivity and stereospecificity when using a cationic gold(I) catalyst. Treatment of 4‐styrylcyclopent‐1‐enecarboxylates under different conditions affords a range of highly functionalized dihydrobenzofurans and dihydroisobenzofurans. A divergence in product selectivity, which depends on the anion of the silver salts used, was observed. Interestingly, ring‐fused tetrahydroquinolines undergo only 1,2′‐alkyl migration reaction by means of a C? C cleavage/cyclization sequence to provide tetrahydroazepine derivatives. Mechanistic studies suggest that the gold complexes catalyze 1,2‐alkyl migration reactions through a concerted reaction pathway and 1,2′‐alkyl migration reactions through a stepwise reaction pathway.  相似文献   

10.
2,3,3‐Trisubstituted indolenine constitutes an integral part of many biologically important monoterpene indole alkaloids. We report herein an unprecedented access to this skeleton by a TiCl3‐mediated reductive cyclization of tetrasubstituted alkenes bearing a 2‐nitrophenyl substituent. The proof of concept is demonstrated firstly by accomplishing a concise total synthesis of (+)‐1,2‐dehydroaspidospermidine featuring a late‐stage application of this key transformation. A sequence of reduction of nitroarene to nitrosoarene followed by 6π‐electron‐5‐atom electrocyclization and a 1,2‐alkyl shift of the resulting nitrone intermediate was proposed to account for the reaction outcome. A subsequent total synthesis of (+)‐condyfoline not only illustrates the generality of the reaction, but also provides a mechanistic insight into the nature of the 1,2‐alkyl shift. The exclusive formation of (+)‐condyfoline indicates that the 1,2‐alkyl migration follows a concerted Wagner–Meerwein pathway, rather than a stepwise retro‐Mannich/Mannich reaction sequence. Conditions for almost quantitative conversion of (+)‐condyfoline to (?)‐tubifoline by way of a retro‐Mannich/1,3‐prototropy/transannular cyclization cascade are also documented.  相似文献   

11.
A mechanistic model is presented for the base‐catalyzed intramolecular cyclization of polycyclic unsaturated alcohols of type A to ethers D (Scheme 1). The alkoxide anion B is formed first in a fast acid‐base equilibrium. For the subsequent reaction to D , a carbanion‐like transition state C is proposed. This mechanism is in full agreement with our results regarding the influence of substituents on the regioselectivity and the rate of cyclization. We studied the effect of alkyl substituents in allylic position (alkylated endocylic olefinic alcohols 1 – 3 ) and, especially, at the exocyclic double bond ( 12 – 15 ). The fastest cyclization (krel=1) is 12 → 16 , which proceeds via a primary carbanion‐like transition state ( E : R1=R2=H). The corresponding processes 13 → 17 and 14 → 17 are characterized by a less‐stable secondary carbanion‐like transtition state ( E : R1=Me, R2=H, or vice versa) and are slower by a factor of 104. The slowest reaction (krel ca. 10−6) is the cyclization 15 → 18 via a tertiary carbanion‐like transition state ( E : R1=R2=Me).  相似文献   

12.
A series of N‐alkyl/aryl carbazole 3,6‐substituted arylene trifluorovinyl ether (TFVE) monomers were synthesized in high purity and yield from a concise four‐step synthesis using carbazole as a starting material. Condensate‐free, step‐growth chain extension of the monomers afforded perfluorocyclobutyl (PFCB) arylene ether homo‐ and copolymers as solution processable, optically transparent blue‐light emissive materials. Arylene TFVE monomers and conversion to PFCB arylene ether polymers were structurally elucidated and purity confirmed by high resolution mass spectroscopy, NMR (1H, 13C, and 19F) spectroscopy, gel permeation chromatography, and attenuated total reflectance Fourier transform infrared analysis. Thermal analysis by differential scanning calorimetry and thermogravimetric analysis revealed glass transition temperatures >150 °C and onset of decomposition in nitrogen >410 °C with 40 wt % char yield up to 900 °C. Optical and electrochemical studies included solution (tetrahydrofuran) and solid state (spin cast thin film) UV–vis/fluorescence spectroscopy and cyclic voltammetry which showed structure dependence of these blue emissive systems on the nature of the N‐alkyl/aryl carbazole substitution in either homo‐ or copolymer configurations. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 552–560  相似文献   

13.
Nine new organoammonium violurates [R1R2R3NH][C4H2N3O4] [R1 = R2 = H, R3 = c‐C3H5 ( 2 ), R3 = tBu ( 3 ), R3 = adamantyl ( 4 ), R3 = C6H2Me2‐4,5‐NH2‐2 ( 5 ); R1 = H, R2 = R3 = Et ( 6 ), iPr ( 7 ); R1 = H, R2/R3 = (–CH2–)4 ( 8 ); R1 = R2 = R3 = Et ( 9 ); R1 = R2 = Me, R3 = (CH2)2NMe2 ( 10 )] were prepared by treatment of violuric acid ( 1 ) with a variety of primary, secondary, and tertiary amines. With the exception of orange 5 , all these violurate salts form bright blue or blue‐purple crystalline solids. The acidic triethylammonium violurate [NHEt3]H[C4H2N3O4]2 · H2O ( 9a ) was isolated in the form of red‐violet, plate‐like crystals by the reaction of violuric acid hydrate with triethylamine in a molar ratio of 2:1 in ethanol. All compounds were fully characterized by their IR and NMR (1H, 13C) data as well as elemental analyses. X‐ray crystal structures determinations of 2 , 7 , and 9a revealed supramolecular self‐assembly through networks of N–H ··· N and N–H ··· O hydrogen bonds in the crystalline state.  相似文献   

14.
The 1:1 proton‐transfer compound of the potent substituted amphetamine hallucinogen (R)‐2‐amino‐1‐(8‐bromobenzo[1,2‐b;5,4‐b′]difuran‐4‐yl)propane (common trivial name `bromodragonfly') with 3,5‐dinitrosalicylic acid, namely 1‐(8‐bromobenzo[1,2‐b;5,4‐b′]difuran‐4‐yl)propan‐2‐aminium 2‐carboxy‐4,6‐dinitrophenolate, C13H13BrNO2+·C7H3N2O7, forms hydrogen‐bonded cation–anion chain substructures comprising undulating head‐to‐tail anion chains formed through C(8) carboxyl–nitro O—H...O associations and incorporating the aminium groups of the cations. The intrachain cation–anion hydrogen‐bonding associations feature proximal cyclic R33(8) interactions involving both an N+—H...Ophenolate and the carboxyl–nitro O—H...O associations and aromatic π–π ring interactions [minimum ring centroid separation = 3.566 (2) Å]. A lateral hydrogen‐bonding interaction between the third aminium H atom and a carboxyl O‐atom acceptor links the chain substructures, giving a two‐dimensional sheet structure. This determination represents the first of any form of this compound and is in the (R) absolute configuration. The atypical crystal stability is attributed both to the hydrogen‐bonded chain substructures provided by the anions, which accommodate the aminium proton‐donor groups of the cations and give crosslinking, and to the presence of the cation–anion aromatic ring π–π interactions.  相似文献   

15.
Gold‐catalyzed cyclization of various furan‐ynes with a propargyl carbonate or ester moiety results in the formation of a series of polycyclic aromatic ring systems. The reactions can be rationalized through a tandem gold‐catalyzed 3,3‐rearrangement of the propargyl carboxylate moiety in furan‐yne substrates to form an allenic intermediate, which is followed by an intramolecular Diels–Alder reaction of furan and subsequent ring‐opening of the oxa‐bridged cycloadduct. It was found that the steric and electronic properties of phosphine ligands on the gold catalyst had a significant impact on the reaction outcome. In the case of 1,5‐furan‐yne, the cleavage of the oxa‐bridge in the cycloadduct with concomitant 1,2‐migration of the R1 group occurs to furnish anthracen‐1(2H)‐ones bearing a quaternary carbon center. For 1,4‐furan‐yne, a facile aromatization of the cycloadduct takes place to give 9‐oxygenated anthracene derivatives.  相似文献   

16.
A rare example of C(sp3)?H functionalization of simple alkanes with unactivated alkenes is presented. In the presence of a copper salt and di‐tert‐butyl peroxide (DTBP), N‐allyl anilines underwent exo‐selective alkylation/cyclization cascade with unactivated alkenic bonds as radical acceptors and simple alkanes as radical precursors, providing a direct access to 3‐alkyl indolines. The present protocol features simple operation, broad substrate scope and great exo selectivity.  相似文献   

17.
A nine-step (!) solid-phase synthesis and subsequent cleavage with cyclization from the polymeric support were the keys to preparing high-quality molecular libraries of thiazolylhydantoines 1 from modified amino acid building blocks. Each step in the synthesis is different. Because the final cyclization cleaves only molecules that have been successfully constructed, the products obtained are pure. R1, R2=alkyl; R3=aryl, arylO; R4=allyl.  相似文献   

18.
A regiospecific cyclization‐dehydration reaction of a 1‐[(4‐(N‐alkyl‐N‐(tert‐butyloxycarbony)amino)‐phenyl]‐4,4,4‐trifluorobutane‐1,3‐done with a 4‐aminosulfonyl‐, or 4‐methylsulfonyl‐, phenylhydrazine hydrochloride in refluxing ethanol proceeded with simultaneous loss of the N‐tert‐butyloxycarbonyl protecting group to afford a group of 1‐(4‐methanesulfonylphenyl or 4‐aminosulfonylphenyl)‐5‐[4‐(N‐alkylaminophenyl)]‐3‐(trifluoromethyl)‐11H‐pyrazoles(6). Subsequent reaction of the pyrazole 6 (R1 = R2 = Me) with nitric oxide (40 psi) proceeded via a N‐methylamino‐N‐diazen‐1‐ium‐1,2‐diolate intermediate that undergoes protonation of the more basic diazen‐1‐ium‐1,2‐diolate N2‐nitrogen and then loss of a nitroxyl (HNO) species to furnish the N‐nitroso product 7.  相似文献   

19.
Polyfluorene homopolymer ( P1 ) and its carbazole derivatives ( P2 – P4 ) have been prepared with good yield by Suzuki coupling polymerization. P2 is an alternating copolymer based on fluorene and carbazole; P3 is a hyperbranched polymer with carbazole derivative as the core and polyfluorene as the long arms; P4 is a hyperbranched polymer with carbazole derivative as the core and the alternating fluorene and carbazole as the long arms. These polymers show highly thermal stability, and their structures and physical properties are studied using gel permeation chromatography, 1H NMR, 13C NMR, elemental analysis, Fourier transform infrared spectroscopy, thermogravimetry, UV–vis absorption, photoluminescence, and cyclic voltammetry (CV). The influence of the incorporation of carbazole and the hyperbranched structures on the thermal, electrochemical, and electroluminescent properties has been investigated. Both carbazole addition and the hyperbranched structure increase the thermal and photoluminescent stability. The CV shows an increase of the HOMO energy levels for the derivatives, compared with polyfluorene homopolymer ( P1 ). The EL devices fabricated by these polymers exhibit pure blue‐light‐emitting with negligible low‐energy emission bands, indicating that the hyperbranched structure has a strong effect on the PLED characteristics. The results imply that incorporating carbazole into polyfluorene to form a hyperbranched structure is an efficient way to obtain highly stable blue‐light‐emitting conjugated polymers, and it is possible to adjust the property of light‐emitting polymers by the amount of carbazole derivative incorporated into the polymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 790–802, 2008  相似文献   

20.
The synthesis of a series of optically active N‐acetyl butenoates 3–5 is described using a facile methodology. These butenoates undergo cyclization to the corresponding N‐acetyl‐2‐alkyl‐pyrrolin‐4‐ones 6,7 retaining their stereochemical integrity. The structure of the newly synthesized compounds has been elucidated through 1H‐13C NMR, IR spectroscopy and their enantiomeric excesses have been measured by chiral HPLC analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号