首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nonclassical platinum‐based antitumor agents have shown enormous potential in the treatment of chemoresistant cancers. The design of these agents is based on the hypothesis that platinum‐containing pharmacophores that react with nuclear DNA in cancer cells radically differently than the clinical agent cisplatin will produce a unique spectrum of biological activity. One such class of molecules are platinum–acridine hybrid agents derived from the prototypical complex [PtCl(en)(ACRAMTU)](NO3)2, en=ethane‐1,2‐diamine, ACRAMTU=1‐[2‐(acridin‐9‐ylamino)ethyl]‐1,3‐dimethylthiourea (“PT–ACRAMTU”). This article summarizes milestones in the development of these agents and reviews critical key concepts that have guided their design and that of related compounds.  相似文献   

2.
Synthesis, Crystal Structure, and Vibrational Spectra of Compounds with the Linear Dipnictidoborate (3–) Anions [P–B–P]3–, [As–B–As]3–, and [P–B–As]3– The alkali metal boron compounds M3[BX2] with X = P, As are synthesized from the alkali metals M and the binary components MX or M4X6 and BX in sealed steel ampoules (phosphides) or niobium ampoules (arsenides) at 1000 K. The compounds are obtained as bright yellow prisms (M3[BP2]) or plates (K2Na[BP2]) and yellow‐red prismatic crystals (M3[BAs2], Cs3[BPAs]) which are very sensitive against oxidation and hydrolysis. Three different structure types are formed, namely K2Na[BP2] (C2/m (No. 12); Z = 4; a new mC24 structure type); Na3[BP2] (P21/c (No. 14); Z = 4, β‐Li3[BN2] type), M3[BX2] with M = K, Rb, Cs and X = P, As and Cs3[P–B–As] (C2/c, (No. 15); Z = 4, K3[BP2] type). The bond lengths of the linear [BX2]3– anions are hardly changed and correspond to a Pauling bond order PBO = 1.9 (d(B–P) = 176.7–177.1 pm; d(B–As) = 186.5–188.0 pm). The vibrational spectra confirm the existence of unmixed and mixed units [P–B–P]3–, [As–B–As]3– and [P–B–As]3– with D∞h and C∞v symmetry, respectively. The valence force constants f(B–X) and the corresponding Siebert bond orders, calculated from the frequencies, are discussed and compared with those of the isoelectronic anions and molecules.  相似文献   

3.
A series of binuclear ruthenium(II)–polypyridyl complexes of the type [Ru2(N‐N)4(BPIMBp)]4+, in which N‐N is 2,2′‐bipyridine (bpy; 1 ), 1,10‐phenanthroline (phen; 2 ), dipyrido[3,2‐d:2′,3‐f] quinoxaline (dpq; 3 ), dipyrido[3,2‐a:2′,3′‐c] phenanzine (dppz; 4 ), and 1,4′‐bis[(2‐pyridin‐2‐yl)‐1H‐imidazol‐1‐yl)methyl]‐1,1′‐biphenyl (BPIMBp) is a bridging ligand, have been synthesized and characterized. These complexes are charged (4+) cations and flexible due to the ?CH2 group of the bridging ligand and possess terminal ligands with variable intercalative abilities. The interaction of complexes 1 – 4 with calf thymus DNA (CT‐DNA) was explored by using UV/Vis absorption spectroscopy, steady‐state emission, emission quenching with K4[Fe(CN)6], ethidium bromide displacement assay, Hoechst displacement assay, and viscosity measurements and revealed a groove‐binding mode for all the complexes through a spacer and an intercalative mode for complexes 3 and 4 . A decrease in the viscosity of DNA revealed bending and coiling of DNA, an initial step toward aggregation. Interestingly, a distinctive honeycomb‐like ordered assembly of the DNA–complex species was visualized by fluorescence microscopy in the solution state. The use of SEM and AFM confirmed the disordered self‐organization of the DNA–complex adduct on evaporation of the solvent. The small orderly nanosized DNA aggregates were confirmed by means of circular dichroism, dynamic light scattering (DLS), and TEM. These complexes are moderately cytotoxic against three different cell lines, namely, MCF‐7, HeLa, and HL‐60.  相似文献   

4.
A–B–A stereoblock polymers with atactic poly(N‐isopropylacrylamide) (PNIPAM) as a hydrophilic block (either A or B) and a non‐water‐soluble block consisting of isotactic PNIPAM were synthesized using reversible addition fragmentation chain transfer (RAFT) polymerizations. Yttrium trifluoromethanesulfonate was used in the tacticity control, and bifunctional S,S′‐bis(α,α′‐dimethyl‐α″‐acetic acid)‐trithiocarbonate (BDAT) was utilized as a RAFT agent. Chain structures of the A–B–A stereoblock copolymers were determined using 1H NMR, SEC, and MALDI‐TOF mass spectrometry. BDAT proved to be an efficient RAFT agent in the controlled synthesis of stereoregular PNIPAM, and both atactic and isotactic PNIPAM were successfully used as macro RAFT agents. The glass transition temperatures (Tg) of the resulting polymers were measured by differential scanning calorimetry. We found that the Tg of isotactic PNIPAM is molecular weight dependent and varies in the present case between 115 and 158 °C. Stereoblock copolymers show only one Tg, indicating the miscibility of the blocks. Correspondingly, the Tg may be varied by varying the mutual lengths of the A and B blocks. The phase separation of aqueous solutions upon increasing temperature is strongly affected by the isotactic blocks. At a fixed concentration (5 mg/mL), an increase of the isotacticity of the stereoblock copolymers decreases the demixing temperature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 38–46, 2008  相似文献   

5.
A series of half‐sandwich Ru(II)–arene complexes [Ru(η6‐benzene)(diimine)Cl](PF6) ( 1 – 4 ), where diimine is 1,10‐phenanthroline ( 1 ), 5,6‐dimethyl‐1,10‐phenanthroline ( 2 ), dipyrido[3,2‐a:2′,3′‐c]phenazine ( 3 ) or 11,12‐dimethyldipyrido[3,2‐a:2′,3′‐c]phenazine ( 4 ), have been isolated and characterized using analytical and spectral methods. Complex 2 possesses a familiar pseudo‐octahedral ‘piano‐stool’ structure. The intrinsic DNA binding affinity of the complexes depends upon the diimine ligand: 3 (dppz) > 4 (11,12‐dmdppz) > 2 (5,6‐dmp) > 1 (phen). The π‐stacking interaction of extended planar ring of coordinated dppz ( 3 ) in between the DNA base pairs is more intimate than that of phen ( 1 ), and the incorporation of methyl groups on the dppz ring ( 4 ) discourages the stacking interaction leading to a lower DNA binding affinity for 4 than 3 . Docking studies show that all the complexes bind in the major groove of DNA. Interestingly, 3 shows an ability to convert supercoiled DNA into nicked circular DNA even at 20 μM concentration beyond which complete oxidative DNA degradation is observed. The protein binding affinity of the complexes decreases in the order 4 > 3 > 2 > 1 , and the higher protein binding affinity of 4 illustrates the strong involvement of methyl groups on dppz ring in hydrophobic interaction with protein. Also, 4 cleaves protein more efficiently than the other complexes in the presence of H2O2. It is notable that 2 , 3 and 4 display cytotoxicity against human cervical cancer cell lines (SiHa) with potency higher than the currently used drug cisplatin. Acridine orange/ethidium bromide staining studies reveal that 3 induces apoptosis in cancer cells much more efficiently than 4 .  相似文献   

6.
Theranostic agents are emerging multifunctional molecules capable of simultaneous therapy and diagnosis of diseases. We found that platinum(II)–gadolinium(III) complexes with the formula [{Pt(NH3)2Cl}2GdL](NO3)2 possess such properties. The Gd center is stable in solution and the cytoplasm, whereas the Pt centers undergo ligand substitution in cancer cells. The Pt units interact with DNA and significantly promote the cellular uptake of Gd complexes. The cytotoxicity of the Pt–Gd complexes is comparable to that of cisplatin at high concentrations (≥0.1 mM ), and their proton relaxivity is higher than that of the commercial magnetic resonance imaging (MRI) contrast agent Gd–DTPA. T1‐weighted MRI on B6 mice demonstrated that these complexes can reveal the accumulation of platinum drugs in vivo. Their cytotoxicity and imaging capabilities make the Pt–Gd complexes promising theranostic agents for cancer treatment.  相似文献   

7.
Considering the frightening high level of mortality from cancer, studies of anticancer agents are vital nowadays. The 24 thioderivatives of 2‐alkyl(aryl)‐quinazolin‐4(3H)‐thiones and 20 thioderivatives of [1,2,4]triazolo[1,5‐c]quinazoline‐2‐thiones were synthesized and evaluated for preliminary in vitro anticancer activity with subsequent in silico QSAR analysis. The substance 18 had the best results inhibiting growth of eight cancer cell lines: CCRF‐CEM of leukemia; SF‐539, SNB‐75, and U251 of CNS cancer; 786, RXF393, and UO‐31 of renal cancer; and MDA‐MB‐231/ATCC of breast cancer (?31.50 – 47.41% of cell growth) with low procancer effect. Calculated QSAR‐models for CCRF‐CEM of leukemia, T‐47D and HS 578T of breast cancer, and mean cell growth demonstrated good rate of anticancer activity prediction (r2 = 0.7 – 0.8,  = 0.5 – 0.7).  相似文献   

8.
Gambogic acid (GA, 1 ), the most prominent member of Garcinia natural products, has been reported to be a promising anti‐tumor agent. Previous studies have suggested that the planar B ring and the unique 4‐oxa‐tricyclo[4.3.1.03,7]dec‐2‐one caged motif were essential for anti‐tumor activity. To further explore the structure‐activity relationship (SAR) of caged Garcinia xanthones, two new series of B‐ring modified caged GA analogues 13a – 13e and 15a – 15e were synthesized utilizing a Claisen/Diel‐Alder cascade reaction. Subsequently, these compounds were evaluated for their in vitro anti‐tumor activities against A549, MCF‐7, SMMC‐7721 and BGC‐823 cancer cell lines by MTT assay. Among them, 13b – 13e exhibited micromolar inhibition against several cancer cell lines, being approximately 2–4 fold less potent in comparison to GA. SAR analysis revealed that the peripheral gem‐dimethyl groups are essential for maintaining anti‐tumor activity and substituent group on C1 position of B‐ring has a significant effect on potency, while modifications at C‐2, C‐3 and C‐4 positions are relatively tolerated. These findings will enhance our understanding of the SAR of Garcinia xanthones and lead to the development of simplified analogues as potential anti‐tumor agents.  相似文献   

9.
A series of novel N‐(2‐(pyridine‐4‐yl)‐1H‐pyrrolo[3,2‐c]‐pyridin‐6‐yl‐(substituted)‐sulfonamide derivatives were synthesized from 2‐bromo‐6‐nitro‐1H‐pyrrolo[3,2‐c]pyridine through a series of reactions including Suzuki reaction, reduction, protection, and sulfonamide coupling. All the synthesized compounds were screened for anticancer activity against MCF‐7, HeLa, A‐549, and Du‐145 cancer cell lines by the MTT assay. The preliminary bioassay suggests that most of the compounds show antiproliferation with different degrees. Doxorubicin was used as a positive control. Among the synthesized compounds, 8d and 8h were most active compared with the standard in cell line data. The synthesized compounds 8d and 8h show IC50 values in the range of 1.88–5.16 μM for all the cell lines. Compounds 8d and 8h were further studied for a panel of eight human kinase at 10 μM concentrations and the result shows 64% to 70% inhibitions for both Aurora‐A and Aurora‐B kinase.  相似文献   

10.
Preparation, Characterisation, and Crystal Structures of the Pseudohalogen Crown Ether Complexes [K([18]crown‐6)(X)(OPPh3)] (X = N3, OCN and SCN) The potassium crown ether complexes [K([18]Crown‐6)(X)(OPPh3)] (with X = N3, OCN and SCN) can be obtained by reaction of KX with 18‐crown‐6 (1, 4, 7, 10, 13, 16‐hexaoxacyclooctadecane and triphenylphosphane in THF exposed to UV light. All crown ether complexes were characterized by means of vibrational spectroscopy and X‐ray diffraction. They crystallize in the rhombic pointgroup R3m with three molecules in the unit cell: [K([18]crown‐6) (N3)(OPPh3)] ( 1 ): lattice constants at 293 K: a = b = 14.213(2) Å; c = 13.951(2) Å; R1 = 0.0249. [K([18]crown‐6)(OCN)(OPPh3)] ( 2 ): a = b = 14.239(2) Å; c = 13.8927(14) Å; R1 = 0.0257. [K([18]crown‐6)(NCS)(OPPh3)] ( 3 ): a = b = 14.339(2) Å; c = 14.266(2) Å; R1 = 0.0264.  相似文献   

11.
The asymmetric unit of (P)‐chloridobis[(S)‐(+)‐5‐(3,5‐dioxa‐4‐phosphacyclohepta[2,1‐a:3,4‐a′]dinaphthalen‐4‐yl)dibenz[b,f]azepine]iridium(I)–benzene–pentane (1/1/1), [IrCl(C34H22NO2P)2]·C6H6·C5H12, contains two formula units. The two symmetry‐independent molecules of the Ir complex have similar conformations and approximate C2 symmetry, with small deviations arising from slightly different puckering of the seven‐membered dioxaphosphacycloheptadiene rings. The Ir atoms have trigonal–bipyramidal coordination geometry, with the P atoms in axial positions. The steric strain of the bidentate coordination of the P–alkene ligand through its P and alkene C atoms causes the N atom to have pyramidal geometry, compared with the trigonal–planar geometry observed in the free ligand. The coordination also results in an anti conformation of the binaphthyl and alkene groups within the P–alkene ligand.  相似文献   

12.
Two near‐infrared (NIR) absorbing metallopolyynes of platinum ( P1 and P2 ) functionalized with a weakly electron‐donating fluorene unit and two strong electron acceptors (viz. benzo[1,2‐c:4,5‐c′]bis([1,2,5]thiadiazole) and [1,2,5]thiadiazolo[3,4‐i ]dibenzo[a,c]phenazine) were synthesized and applied for NIR photovoltaic applications. With these designed weak donor–strong acceptor electronic traits, these metallopolymers possess narrow bandgaps of 1.54 and 1.65 eV and a low HOMO level of about 5.50 eV, thus inducing a power conversion efficiency up to 1% for bulk heterojunction solar cells at the NIR wavelength.

  相似文献   


13.
An innovative ternary copper(II) complex, [Cu(Cl‐PIP)(Tyr)Cl]n, has been synthesized and characterized using infrared spectroscopy, elemental analysis and single‐crystal X‐ray diffraction analysis. X‐ray crystallography indicates that the Cu atom is five‐coordinated in a square‐pyramidal configuration. The unit forms a one‐dimensional chain along the crystallographic c‐axis. The complex was screened for cytotoxicity against a panel of eight human cancer cell lines, namely MDA‐MB‐231, CAL‐51, K562, HeLa, SGC‐7901, A549, MCF‐7 and SMMC‐7721. The best anticancer activity was obtained with triple‐negative breast cancer CAL‐51 and MDA‐MB‐231 cell lines, with IC50 values in the range 0.035–0.10 μM, and this was better than using carboplatin. The complex inhibits proteasomal chymotrypsin‐like activity, and docking studies reveal its interaction with 20S proteasome. In addition, the complex causes accumulation of ubiquitinated proteins, induces apoptosis and inhibits cell proliferation, indicating its great potential as a novel therapy for triple‐negative breast cancer.  相似文献   

14.
A single hybrid affinity‐captured‐LC‐TOF‐MS/MS method was developed and applied for the quantification of total antibody, antibody conjugated drug and free payload of antibody drug conjugate (ADC). Adcetris®, a valine–citrulline monomethyl auristatin E conjugated ADC, was used as a model ADC compound. A quadratic regression (weighted 1/concentration) was used to fit calibration curves over the concentration range 30.65–613.00 ng/mL with an equation y = ax2 + bx + c for the antibody‐conjugated drug of Adcetris®. The qualification run met the acceptance criteria of ±25% accuracy and precision values for quality control samples. For the analysis of total antibody, a signature peptide (TTPPVLDSDGSFFLYSK, molecular weight 1874) was used after affinity capture using magnetic beads and on‐bead trypsin digestion. A quadratic regression (weighted 1/concentration) was used to fit calibration curves over the concentration range 5.00–100.00 μg/mL with an equation y = ax2 + bx + c for total antibody. For free payload analysis of monomethyl auristatin E, a protein precipitation method followed by LC‐TOF‐MS/MS analysis was used. A quadratic regression (weighted 1/concentration) was used to fit calibration curves over the concentration range 1.01–2200 ng/mL with an equation y = ax2 + bx + c for free payload. Pharmacokinetic study samples and in vitro stability samples in rat were successfully analyzed by this a hybrid affinity‐captured‐LC‐TOF‐MS/MS method. This single platform method is a useful complementary method for the pharmacokinetics study of ADC with valine–citrulline linker at the early drug discovery stage.  相似文献   

15.
pH‐sensitive poly(acrylamide‐co‐itaconic acid) [P(AAm/IA)] hydrogels were prepared by radiation induced copolymerization of acrylamide (AAm) and itaconic acid (IA) at various ratios. Swelling and shrinking behaviors of these hydrogels were found greatly dependent on the composition of the hydrogel and pH of the buffer solution. The basic structural parameters of the P(AAm/IA) networks such as the molecular weight between crosslinks (M c) and polymer–solvent interaction parameter (χ) were also determined using the modified Flory‐Rehner equations. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2586–2594, 2004  相似文献   

16.
Three new cobalt–ruthenium heterometallic molecular rectangles, 1 – 3 , were synthesized through the coordination‐driven self‐assembly of a new cobalt sandwich donor, (η5‐Cp)Co[C4trans‐Ph2(4‐Py)2] (L ; Cp: cyclopentyl; Py: pyridine), and one of three dinuclear precursors, [(p‐cymene)2Ru2(OO∩OO)2Cl2] [OO∩OO: oxalato ( A1 ), 5,8‐dioxido‐1,4‐naphthoquinone ( A2 ), or 6,11‐dioxido‐5,12‐naphthacenedione ( A3 )]. All of the self‐assembled architectures were isolated in very good yield (92–94 %) and were fully characterized by spectroscopic analysis; the molecular structures of 2 and 3 were determined by single‐crystal X‐ray diffraction analysis. The anticancer activities of bimetallic rectangles 1 – 3 were evaluated with a 3‐[4,5‐dimethylthiazol‐2‐yl]‐2,5‐diphenyltetrazolium bromide (MTT) assay, an autophagy assay, and Western blotting. Rectangles 1 – 3 showed higher cytotoxicity than doxorubicin in AGS human gastric carcinoma cells. In addition, the autophagic activities and apoptotic cell death ratios were increased in AGS cells by treatment with 1 – 3 ; the rectangles induced autophagosome formation by promoting LC3‐I to LC3‐II conversion and apoptotic cell death by increasing caspase‐3/7 activity. Our results suggest that rectangles 1 – 3 induce gastric cancer cell death by modulating autophagy and apoptosis and that they have potential use as agents for the treatment of human gastric cancer.  相似文献   

17.
The OCO carboxylate unit of pivalic acid adds to the B–B bond of the azadiboriridine NB2R3 ( 1 a , R = tBu) to give the chiral heterocyclohexadiene 2 a ; the enantiomers of 2 a are transformed into one another by a [1,3] sigmatropic hydride transfer along the B–N–B ring fragment. The azadiboracyclopentanes 3 a – e are formed from 1 a and the alkenes ethene, propene, isobutene, (trimethylsilyl)ethene, and 2,3‐dimethyl‐1‐butene. Only one double bond of cyclopentadiene and 1,3‐butadiene reacts in the same way to give 3 f , g , respectively, and both of the double bonds of 1,3‐butadiene react with an excess of 1 a to give 3 h , which is obtained in a 9 : 1 mixture of racemate and meso‐isomer; the meso‐isomer crystallizes in the space group P21/n. The corresponding diazadiboracyclopentane 3 i and the triazadiboracyclopentane 3 j are formed from 1 a and N‐phenyl benzaldimine or azobenzene, respectively. Ethyne and 1 a give either the azadiboracyclopentene 4 a (1 : 1) or the diazatetraborabicyclo[3.3.0]octane 3 k (1 : 2). The phosphaalkyne P≡C–tBu and 1 a  analogously yield the heterocyclopentene 4 c . The insertion of SitBu2 into 1 a to give the azasiladiboracyclobutane 5 a is achieved by applying Li powder and tBu2SiCl2. The hitherto unknown azadiboriridines BN2R2R′ (R = tBu; R′ = 1‐iPr, 2‐Mes, 2‐CMe2Et: 1 b – d ) were synthesized by the chloroboration of the iminoboranes RB≡NiPr and RB≡NR with RBCl2, MesBCl2, and (EtMe2C)BCl2, respectively, and subsequent dechlorination of the isolated and characterized diborylamines Cl–BR–NiPr–BR–Cl ( 6 a ), Cl–BR–NR–BMes–Cl ( 6 b ), and Cl–BR–NR–B(CMe2Et)–Cl ( 6 c ), respectively, with lithium (Mes = mesityl).The azadiboriridine 1 b dimerizes to give the diaza‐nido‐hexaborane 7 a , whereas 1 c and 1 d are storable at room temperature. The product 1 c crystallizes as a racemate in the space group P21/c; its ring geometry differs from that of the known N‐mesityl isomer.  相似文献   

18.
In the design of physiologically stable anticancer gold(III) complexes, we have employed strongly chelating porphyrinato ligands to stabilize a gold(III) ion [Chem. Commun. 2003 , 1718; Coord. Chem. Rev. 2009 , 253, 1682]. In this work, a family of gold(III) tetraarylporphyrins with porphyrinato ligands containing different peripheral substituents on the meso‐aryl rings were prepared, and these complexes were used to study the structure–bioactivity relationship. The cytotoxic IC50 values of [Au(Por)]+ (Por=porphyrinato ligand), which range from 0.033 to >100 μM , correlate with their lipophilicity and cellular uptake. Some of them induce apoptosis and display preferential cytotoxicity toward cancer cells than to normal noncancerous cells. A new gold(III)–porphyrin with saccharide conjugation [Au(4‐glucosyl‐TPP)]Cl ( 2 a ; H2(4‐glucosyl‐TPP)=meso‐tetrakis(4‐β‐D ‐glucosylphenyl)porphyrin) exhibits significant cytostatic activity to cancer cells (IC50=1.2–9.0 μM ) without causing cell death and is much less toxic to lung fibroblast cells (IC50>100 μM ). The gold(III)–porphyrin complexes induce S‐phase cell‐cycle arrest of cancer cells as indicated by flow cytometric analysis, suggesting that the anticancer activity may be, in part, due to termination of DNA replication. The gold(III)–porphyrin complexes can bind to DNA in vitro with binding constants in the range of 4.9×105 to 4.1×106 dm3 mol?1 as determined by absorption titration. Complexes 2 a and [Au(TMPyP)]Cl5 ( 4 a ; [H2TMPyP]4+=meso‐tetrakis(N‐methylpyridinium‐4‐yl)porphyrin) interact with DNA in a manner similar to the DNA intercalator ethidium bromide as revealed by gel mobility shift assays and viscosity measurements. Both of them also inhibited the topoisomerase I induced relaxation of supercoiled DNA. Complex 4 a , a gold(III) derivative of the known G‐quadruplex‐interactive porphyrin [H2TMPyP]4+, can similarly inhibit the amplification of a DNA substrate containing G‐quadruplex structures in a polymerase chain reaction stop assay. In contrast to these reported complexes, complex 2 a and the parental gold(III)–porphyrin 1 a do not display a significant inhibitory effect (<10 %) on telomerase. Based on the results of protein expression analysis and computational docking experiments, the anti‐apoptotic bcl‐2 protein is a potential target for those gold(III)–porphyrin complexes with apoptosis‐inducing properties. Complex 2 a also displays prominent anti‐angiogenic properties in vitro. Taken together, the enhanced stabilization of the gold(III) ion and the ease of structural modification render porphyrins an attractive ligand system in the development of physiologically stable gold(III) complexes with anticancer and anti‐angiogenic activities.  相似文献   

19.
Cytostatic agents that interfere with specific cellular components to prevent cancer cell growth offer an attractive alternative, or complement, to traditional cytotoxic chemotherapy. Here, we describe the synthesis and characterization of a new binuclear RuII–PtII complex [Ru(tpy)(tpypma)Pt(Cl)(DMSO)]3+ (tpy=2,2′:6′,2′′‐terpyridine and tpypma=4‐([2,2′:6′,2′′‐terpyridine]‐4′‐yl)‐N‐(pyridin‐2‐ylmethyl)aniline), VR54, which employs the extended terpyridine tpypma ligand to link the two metal centres. In cell‐free conditions, VR54 binds DNA by non‐intercalative reversible mechanisms (Kb=1.3×105 M ?1) and does not irreversibly bind guanosine. Cellular studies reveal that VR54 suppresses proliferation of A2780 ovarian cancer cells with no cross‐resistance in the A2780CIS cisplatin‐resistant cell line. Through the preparation of mononuclear RuII and PtII structural derivatives it was determined that both metal centres are required for this anti‐proliferative activity. In stark contrast to cisplatin, VR54 neither activates the DNA‐damage response network nor induces significant levels of cell death. Instead, VR54 is cytostatic and inhibits cell proliferation by up‐regulating the cyclin‐dependent kinase inhibitor p27KIP1 and inhibiting retinoblastoma protein phosphorylation, which blocks entry into S phase and results in G1 cell cycle arrest. Thus, VR54 inhibits cancer cell growth by a gain of function at the G1 restriction point. This is the first metal‐coordination compound to demonstrate such activity.  相似文献   

20.
Research aimed at enhancing the efficacy of organometallic complexes against cancer, has shown that attaching bio‐active molecules to (metallo)drugs often enhances their biological properties. New salicylaldimine and 2‐pyridylimine ligands ( L2 and L3 ), containing a bio‐active acridine scaffold, were synthesized and complexed to Rh(III), Ir(III), Ru(II) and Os(II) metal ion centers. The resulting acridine‐containing half‐sandwich complexes have been characterized fully by elemental analysis, FT‐IR and NMR spectroscopy, HR‐ESI mass spectrometry as well as single crystal X‐ray diffraction, for the Rh(III) N^N bidentate complex [RhCp*Cl( L3 )][BPh4]. The antiproliferative activity of the ligands ( L2 and L3 ) and complexes ( C1 to C9 ) were evaluated in vitro against human promyelocytic leukemia cells (HL60) and normal skin fibroblast cells (FG0). The compounds exhibit good activities against HL60 cells and are consistently selective towards cancerous cells over non‐tumorous cells. This study demonstrates the potential of such hybrid compounds to target cancer cells specifically. The most active complex, [RhCp*Cl( L2 )], exhibited binding to DNA model guanosine‐5’‐monophosphate (5’‐GMP) which suggests a mode of action involving interaction of the complex with 5’‐GMP found on DNA backbone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号