Theoretical clues are desirable to help uncover the origin of bio‐homochirality in life, as well as the mechanisms for the asymmetric production of functional chiral substances. Here, an open‐to‐matter reaction network based on a model proposed by Plasson et al. is studied. In the extended model, the statistical fluctuations lead the system to break chiral symmetry autonomously, that is, without any initial enantiomeric excess or external influence. In the stability diagrams, we observe regions of parameter space that correspond to racemic, homochiral, chiral oscillatory, and, to our knowledge, for the first time in a chiral model, chaotic regimes. The dependencies of the final concentrations of chiral substances on the parameters are determined analytically and discussed for both the racemic and homochiral regimes. 相似文献
The development of enantioselective aldol reactions catalyzed by chiral phosphine oxides is described. The aldol reactions presented herein do not require the prior preparation of the masked enol ethers from carbonyl compounds as aldol donors. The reactions proceed through a trichlorosilyl enol ether intermediate, formed in situ from carbonyl compounds, which then acts as the aldol donor. Phosphine oxides activate the trichlorosilyl enol ethers to afford the aldol adducts with high stereoselectivities. This procedure was used to realize a directed cross‐aldol reaction between ketones and two types of double aldol reactions (a reaction at one/two α position(s) of a carbonyl group) with high diastereo‐ and enantioselectivities. 相似文献
Amino sulfonamide catalyst : A distal proton of the axially chiral amino sulfonamide (S)‐ 1 realized the opposite diastereoselectivity in Mannich and cross‐aldol reactions compared with that observed in proline‐catalyzed reactions. The reactions catalyzed by (S)‐ 1 proceeded smoothly to give the anti‐Mannich and syn‐aldol adducts in excellent enantioselectivity (see scheme).
Spontaneous mirror symmetry breaking is an efficient way to obtain homogeneously chiral agents, pharmaceutical ingredients and materials. It is also in the focus of the discussion around the emergence of uniform chirality in biological systems. Tremendous progress has been made by symmetry breaking during crystallisation from supercooled melts or supersaturates solutions and by self‐assembly on solid surfaces and in other highly ordered structures. However, recent observations of spontaneous mirror symmetry breaking in liquids and liquid crystals indicate that it is not limited to the well‐ordered solid state. Herein, progress in the understanding of a new dynamic mode of symmetry breaking, based on chirality synchronisation of transiently chiral molecules in isotropic liquids and in bicontinuous cubic, columnar, smectic and nematic liquid crystalline phases is discussed. This process leads to spontaneous deracemisation in the liquid state under thermodynamic control, giving rise to long‐term stable symmetry‐broken fluids, even at high temperatures. These fluids form conglomerates that are capable of extraordinary strong chirality amplification, eventually leading to homochirality and providing a new view on the discussion of emergence of uniform chirality in prebiotic systems. 相似文献
Simulations of a chemical kinetics model, based on the free‐energy relationships of classical primary nucleation theory, show that the deracemization phenomenon in systems of achiral or fast racemizing compounds yielding enantiopure crystals as the more stable solid phase is a true spontaneous mirror symmetry breaking process (SMSB). That is, the achievement of a stationary chiral state is more stable than the racemic one. The model translates the free‐energy relationships determined by the existence of a critical size cluster to a chemical kinetics model, in which the consideration of forward and backward reaction rate constants avoids the misuse of network parameters that violate thermodynamic constraints (microreversibility principle), which would lead to apparent in silico SMSB. The model provides qualitative agreement for deracemizations by mechanical attrition of visible crystals, as well as for those obtained under temperature gradients. The analysis of the effect of the system parameters to obtain a SMSB scenario shows that the network possesses the principal characteristics of SMSB networks: 1) an enantioselective autocatalytic stage, corresponding to the non‐linear kinetics of enantioselective (homochiral) cluster‐to‐cluster growth, and 2) the mutual inhibition step originating in the backward flow of chiral clusters towards smaller achiral clusters, or even to a racemizing monomer. The application of such a SMSB kinetic model to enantioselective polymerizations and to chiral biopolymers is discussed. 相似文献
Spontaneous mirror‐symmetry breaking is of fundamental importance in science as it contributes to the development of chiral superstructures and new materials and has a major impact on the discussion around the emergence of uniform chirality in biological systems. Herein we report chirality synchronization, leading to spontaneous chiral conglomerate formation in isotropic liquids of achiral and photoisomerizable azobenzene‐based rod‐like molecules. The position of fluorine substituents at the aromatic core is found to have a significant effect on the stability and the temperature range of these chiral liquids. Moreover, these liquid conglomerates occur in a new phase sequence adjacent to a 3D tetragonal mesophase. 相似文献
C′mon 1,2‐dione : A new diastereo‐ and enantioselective Lewis base catalyzed domino Michael/aldol reaction converts α,β‐unsaturated aldehydes and 1,2‐diones into chiral bicyclo[3.2.1]octane‐6‐carbaldehydes. The products are produced in good to excellent enantioselectivities (90–98 % ee) and can be transformed into bicyclic diols and triols. Additionally, a retro‐aldol cyclization provides access to valuable tetrahydrochromenones (see scheme).
An efficient procedure for the stereocontrolled construction of 2H‐thiopyrano[2,3‐b]quinoline scaffolds has been developed, starting from simple compounds. The domino Michael/aldol reactions between 2‐mercaptobenzaldehydes and enals, promoted by chiral diphenylprolinol TMS ether, proceed with excellent chemo‐ and enantioselectivity to give the corresponding synthetically useful and pharmaceutically valuable 2H‐thiopyrano[2,3‐b]quinolines in high yields with 90–99 % ee. 相似文献