首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Partially hydrogenated graphene materials, synthesized by the chemical reduction/hydrogenation of two different graphene oxides using zinc powder in acidic environment or aluminum powder in alkaline environment, exhibit high electrocatalytic activities, as well as electrochemical sensing properties. The starting graphene oxides and the resultant hydrogenated graphenes were characterized in detail. Their electrocatalytic activity was examined in the oxygen reduction reaction, whereas sensing properties towards explosives were tested by using picric acid as a redox probe. Findings indicate that the high electrocatalytic performance originates not only from the hydrogenation of graphene, but also from unintentional contamination of graphene with manganese and other metals during synthesis. A careful evaluation of the obtained data and a detailed chemical analysis are necessary to identify the origin of this anomalous electrocatalytic activity.  相似文献   

3.
Doped graphene materials are of huge importance because doping with electron‐donating or electron‐withdrawing groups can significantly change the electronic structure and impact the electronic and electrochemical properties of these materials. It is highly important to be able to produce these materials in large quantities for practical applications. The only method capable of large‐scale production is the oxidative treatment of graphite to graphene oxide, followed by its consequent reduction. We describe a scalable method for a one‐step doping of graphene with phosphorus, with a simultaneous reduction of graphene oxide. Such a method is able to introduce significant amount of dopant (3.65 at. %). Phosphorus‐doped graphene is characterized in detail and shows important electronic and electrochemical properties. The electrical conductivity of phosphorus‐doped graphene is much higher than that of undoped graphene, owing to a large concentration of free carriers. Such a graphene material is expected to find useful applications in electronic, energy storage, and sensing devices.  相似文献   

4.
We report effective solution‐processed chemical p‐type doping of graphene using trifluoromethanesulfonic acid (CF3SO3H, TFMS), that can provide essential requirements to approach an ideal flexible graphene anode for practical applications: i) high optical transmittance, ii) low sheet resistance (70 % decrease), iii) high work function (0.83 eV increase), iv) smooth surface, and iv) air‐stability at the same time. The TFMS‐doped graphene formed nearly ohmic contact with a conventional organic hole transporting layer, and a green phosphorescent organic light‐emitting diode with the TFMS‐doped graphene anode showed lower operating voltage, and higher device efficiencies (104.1 cd A?1, 80.7 lm W?1) than those with conventional ITO (84.8 cd A?1, 73.8 lm W?1).  相似文献   

5.
The chemical production of graphene as well as its controlled wet chemical modification is a challenge for synthetic chemists. Furthermore, the characterization of reaction products requires sophisticated analytical methods. In this Review we first describe the structure of graphene and graphene oxide and then outline the most important synthetic methods that are used for the production of these carbon‐based nanomaterials. We summarize the state‐of‐the‐art for their chemical functionalization by noncovalent and covalent approaches. We put special emphasis on the differentiation of the terms graphite, graphene, graphite oxide, and graphene oxide. An improved fundamental knowledge of the structure and the chemical properties of graphene and graphene oxide is an important prerequisite for the development of practical applications.  相似文献   

6.
Nitrogen‐doped reduced graphene oxide (N‐doped RGO) samples with a high level of doping, up to 13 wt. %, have been prepared by annealing graphene oxide under a flow of pure ammonia. The presence of nitrogen within the structure of RGO induces a remarkable increase in the thermal stability against oxidation by air. The thermal stability is closely related with the temperature of synthesis and the nitrogen content. The combustion reaction of nitrogen in different coordination environments (pyridinic, pyrrolic, and graphitic) is analyzed against a graphene fragment (undoped) from a thermodynamic point of view. In agreement with the experimental observations, the combustion of undoped graphene turns out to be more spontaneous than when nitrogen atoms are present.  相似文献   

7.
8.
The preliminary oxidation of graphite to graphite oxide followed by a thermal exfoliation is one of the methods most frequently employed in the preparation of graphene. Such thermally reduced graphene can be widely used for several applications that range from coatings to sensing device fabrication. It is therefore important to investigate in detail the fabrication procedure, the structural features of the resulting graphene, and its potential toxicological effects. Low‐molecular‐weight and carcinogenic compounds are known to be generated during the thermal reduction/exfoliation of graphite oxide. Such compounds are readsorbed onto the reduced material during the cooling process. We investigate here the composition of the organic compounds that are adsorbed onto the graphene material and show that they can be easily released during the following processing steps even at temperatures as low as 50 °C. Some of the released organic compounds are classified as highly carcinogenic. The results shown here are important not only from a chemical point of view to better understand the composition and properties of the graphene material produced, but also to bring attention to the potential toxicological effects that the synthesis itself or the post‐production processes can cause.  相似文献   

9.
Chemical decoration of defects is an effective way to functionalize graphene and to study mechanisms of their interaction with environment. We monitored dynamic atomic processes during the formation of a rotary Si trimer in monolayer graphene using an aberration‐corrected scanning‐transmission electron microscope. An incoming Si atom competed with and replaced a metastable C dimer next to a pair of Si substitutional atoms at a topological defect in graphene, producing a Si trimer. Other atomic events including removal of single C atoms, incorporation and relocation of a C dimer, reversible C? C bond rotation, and vibration of Si atoms occurred before the final formation of the Si trimer. Theoretical calculations indicate that it requires 2.0 eV to rotate the Si trimer. Our real‐time results provide insight with atomic precision for reaction dynamics during chemical doping at defects in graphene, which have implications for defect nanoengineering of graphene.  相似文献   

10.
Graphene, the thinnest two‐dimensional material in nature, has abundant distinctive properties, such as ultrahigh carrier mobility, superior thermal conductivity, very high surface‐to‐volume ratio, anomalous quantum Hall effect, and so on. Laterally confined, thin, and long strips of graphene, namely, graphene nanoribbons (GNRs), can open the bandgap in the semimetal and give it the potential to replace silicon in future electronics. Great efforts are devoted to achieving high‐quality GNRs with narrow widths and smooth edges. This minireview reports the latest progress in experimental and theoretical studies on GNR synthesis. Different methods of GNR synthesis—unzipping of carbon nanotubes (CNTs), cutting of graphene, and the direct synthesis of GNRs—are discussed, and their advantages and disadvantages are compared in detail. Current challenges and the prospects in this rapidly developing field are also addressed.  相似文献   

11.
张兰芹  展晓元  王杰  张智慧  徐国纲 《合成化学》2015,23(12):1166-1170
以球形石墨为原料, HClO4为插层剂,KClO3为氧化剂,采用高温(1 050 ℃)氧化还原法制备了石墨烯(GN),其结构和性能经FT-IR, XRD, SEM, TEM, BET和RS等表征。研究了KClO3的加入量对GN结构和性能的影响,结果表明:当KClO3的加入量为0.08 g·mL-1时,所制备的GN的比表面积为558 m2·g-1,平均孔径为3.012 nm,电阻率为0.02 Ω·cm。  相似文献   

12.
Graphene, a class of two‐dimensional carbon nanomaterial, has attracted extensive interest in recent years, with a significant amount of research focusing on graphene oxides (GOs). They have been primed as potential candidates for biomedical applications such as cell labeling and drug delivery, thus the toxicity and behavior of graphene oxides in biological systems are fundamental issues that need urgent attention. The production of GO is generally achieved through a top‐down route, which includes the usage of concentrated H2SO4 along with: 1) concentrated nitric acid and KClO3 oxidant (Hoffmann); 2) fuming nitric acid and KClO3 oxidant (Staudenmaier); 3) concentrated phosphoric acid with KMnO4 (Tour); or 4) sodium nitrate for in‐situ production of nitric acid in the presence of KMnO4 (Hummers). It has been widely assumed that the properties of these four GOs produced by using the above different methods are roughly similar, so the methods have been used interchangeably. However, several studies have reported that the toxicity of graphene‐related nanomaterials in biological systems may be influenced by their physiochemical properties, such as surface functional groups and structural defects. In addition, considering how GOs are increasingly used in the field of biomedicine, we are interested to see how the oxygen content/functional groups of GOs can impact their toxicological profiles. Since in‐vitro testing is a common first step in assessing the health risks related with engineered nanomaterials, the cytotoxicity of the GOs prepared by the four different oxidative treatments was investigated by measuring the mitochondrial activity in adherent lung epithelial cells (A549) by using commercially available viability assays. The dose–response data was generated by using two assays, the methylthiazolyldiphenyl‐tetrazolium bromide (MTT) assay and the water‐soluble tetrazolium salt (WST‐8). From the viability data, it is evident that there is a strong dose‐dependent cytotoxic response resulting from the four GO nanomaterials tested after a 24 h exposure, and it is suggested that there is a correlation between the amounts of oxygen content/functional groups of GOs with their toxicological behavior towards the A549 cells.  相似文献   

13.
Covalently functionalized graphene materials with well‐defined stoichiometric composition are of a very high importance in the research of 2D carbon material family due to their well‐defined properties. Unfortunately, most of the contemporary graphene‐functionalized materials do not have this kind of defined composition and, usually, the amount of heteroatoms bonded to graphene framework is in the range of 1–10 at. %. Herein, we show that by a well‐established hydroboration reaction chain, which introduces ?BH2 groups into the graphene oxide structure, followed by H2O2 or CF3COOH treatment as source of ?OH or ?H, we can obtain highly hydroxylated compounds of precisely defined composition with a general formula (C1O0.78H0.75)n, which we named graphol and highly hydroxylated graphane (C1(OH)0.51H0.14)n, respectively. These highly functionalized materials with an accurately defined composition are highly important for the field of graphene derivatives. The enhanced electrochemical performance towards important biomarkers as well as hydrogen evolution reaction is demonstrated.  相似文献   

14.
不同氧化程度氧化石墨烯的制备及湿敏性能研究   总被引:2,自引:0,他引:2  
基于氧化石墨烯具有多种含氧官能团和极大的比表面积,研究了不同氧化程度氧化石墨烯的湿敏性能。采用改进的Hummers法制备不同氧化程度的氧化石墨,经过超声分散制备氧化石墨烯水相分散液后,制成氧化石墨烯薄膜湿敏元件。采用X射线衍射、原子力显微镜、红外光谱、拉曼光谱和X射线光电子能谱对实验样品的结构和谱学特性进行表征。结果表明:石墨经氧化后,底面间距增大为0.9 nm左右;随氧化剂用量的增加,氧化石墨中石墨的衍射峰逐渐消失,石墨相微晶尺寸逐渐减小,O/C原子比逐渐增大,氧化程度逐渐升高;氧化石墨烯在水相分散液中可达单层分散,单层氧化石墨烯厚度约为1.3 nm;氧化石墨烯表面接有-OH、C-O-C、C=O和COOH官能团,且官能团含量随氧化程度的升高而增大;氧化石墨烯薄膜元件在室温下对湿度的响应时间约3 s,灵敏度达99%;在11.3%-93.6%相对湿度范围内,元件的电阻随湿度升高显著减小,较高氧化程度的氧化石墨烯薄膜的电阻对数与相对湿度呈线性变化;氧化程度越高,元件灵敏度越高,响应时间越短。  相似文献   

15.
Single atom chemically doped graphene has been theoretically studied by density functional theory. The largest band gap, 0.62 eV, appears in arsenic atom doped graphene, then 0.60 eV comes by the tin atom, whose deformations can neither be ignored. It is also found that oxygen and iron single atom embedded graphene can open band gap by 0.52 and 0.54 eV, respectively. Moreover, doping O atom shows little distortion and high stability by charge redistribution. The band gap of Fe doped graphene is opened by orbital hybridization. The other heteroatom doped results are a little inferior to them.  相似文献   

16.
17.
阳极氧化TiO2纳米管阵列的制备与掺杂*   总被引:3,自引:0,他引:3  
管东升  方海涛  逯好峰  孙涛  李峰  刘敏 《化学进展》2008,20(12):1868-1879
近年来,TiO2纳米管阵列的制备与应用得到了广泛的研究。阳极氧化法制备TiO2纳米管阵列具有工艺简单、成本低廉、易于放大等优点,引起了极大关注。本文综述了阳极氧化法制备TiO2纳米管阵列的研究现状,基于TiO2纳米管阵列在阳极氧化过程中的生长机理,讨论了决定阳极氧化TiO2纳米管阵列形成的主要因素。结合本组的研究工作,总结了如何通过改变电压、升压速率、电解液、温度和氧化时间,实现纳米管管径、管壁厚度、管长的有效控制,提高TiO2纳米管阵列的表面形貌质量。最后介绍了TiO2纳米管阵列掺杂改性方面的研究进展。  相似文献   

18.
以天然鳞状石墨为原料,采用化学氧化法合成氧化石墨,在此基础上采用低温热解膨胀结合微波加热乙二醇还原法合成石墨烯(Gr)以及铂/石墨烯(Pt/Gr)复合材料。SEM和TEM显示所制备的石墨烯为层状结构的半透明薄膜。采用X射线光电子能谱(XPS)和傅立叶转换红外光谱(FTIR)分别确定氧化石墨、膨胀石墨及石墨烯表面含氧官能团的数量和性质。以所制备的碳氧原子比5.94的石墨烯作为载体制备出可用于质子交换膜燃料电池的高负载量的Pt/Gr催化剂,在铂载量高达60%时,表面铂粒子依然具有高分散性,平均粒径为3.8 nm。  相似文献   

19.
Dr. Pablo A. Denis 《Chemphyschem》2014,15(18):3994-4000
Herein, the effects of substitutional doping of graphene with Ga, Ge, As, and Se are shown. Ge exhibits the lowest formation energy, whereas Ga has the largest one. Ga‐ and As‐doped graphene display a reactivity that is larger than that corresponding to a double vacancy. They can decompose H2 and O2 easily. Variation of the type and concentration of dopant makes the adjustment of the interlayer interaction possible. In general, doping of monolayer graphene opens a band gap. At some concentrations, Ga doping induces a half metallic behavior. As is the element that offers the widest range of gap tuning. Heyd–Scuseria–Ernzerhof calculations indicate that it can be varied from 1.3 to 0.3 eV. For bilayer graphene, the doped sheet induces charge redistribution in the perfect underneath sheet, which opens a gap in the range of 0.05–0.4 eV. This value is useful for developing graphene‐based electronics, as the carrier mobility of the undoped sheet is not expected to alter.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号