首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Room temperature Suzuki cross‐coupling polymerization of aryl dibromides/diiodides with aryldiboronic acids/acid esters with t‐Bu3P‐coordinated 2‐phenylaniline‐based palladacycle complex, [2′‐(amino‐kN)[1,1′‐biphenyl]‐2‐yl‐kC]chloro(tri‐t‐butylphosphine)palladium, as a general precatalyst is described. Such room temperature Suzuki cross‐coupling polymerization is achieved by employing six equivalents or more of the base and affords polymers within an hour, with the yields and the molecular weights in general comparable to or higher than reported results that required higher reaction temperature and/or longer polymerization time. Our study provides a general catalyst system for the room temperature Suzuki cross‐coupling polymerization of aryl dibromides/diiodides with aryldiboronic acids/acid esters and paves the road for the investigation of employing other monodentate ligand‐coordinated palladacycle complexes including other electron‐rich monophosphine‐coordinated ones for room temperature cross‐coupling polymerizations. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1606–1611  相似文献   

2.
Direct access to complex, enantiopure benzylamine architectures using a synergistic iridium photoredox/nickel cross‐coupling dual catalysis strategy has been developed. New C(sp3)? C(sp2) bonds are forged starting from abundant and inexpensive natural amino acids.  相似文献   

3.
The first example of a Liebeskind–Srogl cross‐coupling reaction in water as sole reaction solvent is reported. 2‐(Methylthio)pyridine and 2‐(methylthio)benzothiazole were reacted in the presence of a Pd(0) catalyst and copper(I) thiophene‐2‐carboxylate with a series of arylboronic acids. These cross coupling reactions in water proceeded well with electron‐rich boronic acids and gave comparable yields to literature examples using organic solvents. Electron‐poor boronic acids gave somewhat lower yields in aqueous medium.  相似文献   

4.
The synthesis of complex alkyl boronic esters through conjunctive cross‐coupling of vinyl boronic esters with carboxylic acids and aryl iodides is described. The reaction proceeds under mild metallaphotoredox conditions and involves an unprecedented decarboxylative radical addition/cross‐coupling cascade of vinyl boronic esters. Excellent functional‐group tolerance is displayed, and application of a range of carboxylic acids, including secondary α‐amino acids, and aryl iodides provides efficient access to highly functionalized alkyl boronic esters. The decarboxylative conjunctive cross‐coupling was also applied to the synthesis of sedum alkaloids.  相似文献   

5.
The 2,6,8‐triaryl‐3‐iodoquinolin‐4(1H)‐ones derived from the 2,6,8‐triarylquinolin‐4(1H)‐ones were found to undergo Suzuki–Miyaura cross‐coupling with arylboronic acids to afford the corresponding 2,3,6,8‐tetraarylquinolin‐4(1H)‐ones. Sonogashira cross‐coupling of the 2,6,8‐triaryl‐3‐iodoquinolin‐4(1H)‐ones with terminal acetylene in DMF–water (4:1, v/v) in the presence of triethylamine, on the other hand, afforded the 2‐substituted 4,6,8‐triaryl‐1H‐furo[3,2‐c]quinolines in a single‐pot operation.  相似文献   

6.
A highly chemo‐ and regioselective intermolecular 1,2‐aryl‐aminoalkylation of alkenes by photoredox/nickel dual catalysis is described here. This three‐component conjunctive cross‐coupling is highlighted by its first application of primary alkyl radicals, which were not compatible in previous reports. The readily prepared α‐silyl amines could be transferred to α‐amino radicals by photo‐induced single electron transfer step. The radical addition/cross‐coupling cascade reaction proceeds under mild, base‐free and redox‐neutral conditions with good functional group tolerance, and importantly, provides an efficient and concise method for the synthesis of structurally valuable α‐aryl substituted γ‐amino acid derivatives motifs.  相似文献   

7.
PdII‐catalyzed enantioselective C(sp3)?H cross‐coupling of free carboxylic acids with organoborons has been realized using either mono‐protected amino acid (MPAA) ligands or mono‐protected aminoethyl amine (MPAAM) ligands. A diverse range of aryl‐ and vinyl‐boron reagents can be used as coupling partners to provide chiral carboxylic acids. This reaction provides an alternative approach to the enantioselective synthesis of cyclopropanecarboxylic acids and cyclobutanecarboxylic acids containing α‐chiral tertiary and quaternary stereocenters. The utility of this reaction was further demonstrated by converting the carboxylic acid into cyclopropyl amine without loss of optical activity.  相似文献   

8.
Seven differently glycosidated sugar amino acids (SSAs) derived from glucosamine have been prepared. Following standard solution‐phase peptide‐coupling procedures, the glycosidated 2‐amino‐2‐deoxy‐D ‐glucopyranosiduronic acids were condensed with natural amino acids to furnish useful heterodi‐ and ‐trimeric building blocks to be used in peptide synthesis. Combinations of these building blocks yielded hetero‐oligomeric peptides with two sugar amino acid units in different distances to each other. These were prepared to evaluate the influence of glycosidic side chains on the peptide backbone. Conformations of selected examples were examined by means of ROESY spectroscopy in combination with molecular dynamics (MD) simulations and circular‐dichroism (CD) studies.  相似文献   

9.
We report a general method for selective cross‐coupling of α,β‐unsaturated carboxylic acids with aryl tosylates enabled by versatile Pd(II) complexes. This method features the general cross‐coupling of ubiquitous α,β‐unsaturated carboxylic acids by decarboxylation. The transformation is characterized by its operational simplicity, the use of inexpensive, air‐stable Pd(II) catalysts, scalability and wide substrate scope. The reaction proceeds with high trans selectivity to furnish valuable (E)‐1,2‐diarylethenes.  相似文献   

10.
Qian Cai  Wei Zhou 《中国化学》2020,38(8):879-893
Copper‐catalyzed cross‐couplings of aryl halides and nucleophiles, traditionally called Ullmann‐type coupling reactions, were initially reported by Ullmann et al. from 1901—1929. A seminal report in 1998 by Ma et al. from Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences revealed an accelerating effect caused by amino acids, which brought Ullmann‐type coupling reactions into a ligand‐accelerating era. From 1999 to the first 10 years of 2000s, the first‐generation ligands were developed by many researchers and promoted Ullmann‐type coupling reactions of aryl iodides and bromides under relatively mild conditions. Amino acid ligands, developed by Ma and coworkers, are one class of the most important first‐generation ligands. In the second 10 years of 2000s, Ma et al. led the discovery of second‐generation ligands for copper‐catalyzed cross‐coupling reactions. Two great breakthroughs have been realized by using second‐generation oxalic diamide and related amide ligands, with aryl chlorides as general coupling partner and with low catalyst loadings. Now copper‐catalyzed cross coupling reactions of aryl halides and nucleophiles with amino acids or oxalic diamides and related amides as ligands are recognized as Ullmann‐Ma reactions and have found extensive applications in organic synthesis.  相似文献   

11.
A series of α‐(fluoro‐substituted phenyl)pyridines have been synthesized by means of a palladium‐catalyzed cross‐coupling reaction between fluoro‐substituted phenylboronic acid and 2‐bromopyridine or its derivatives. The reactivities of the phenylboronic acids containing di‐ and tri‐fluoro substituents with α‐pyridyl bromide were investigated in different catalyst systems. Unsuccessful results were observed in the Pd/C and PPh3 catalyst system due to phenylboronic acid containing electron‐withdrawing F atom(s). For the catalyst system of Pd(OAc)2/PPh3, the reactions gave moderate yields of 55% –80%, meanwhile, affording 10% –20% of dimerisation (self‐coupling) by‐products, but trace products were obtained in coupling with 2,4‐difluorophenylboronic acids because of steric hinderance. Pd(PPh3)4 was more reactive for boronic acids with sterically hindering F atom(s), and the coupling reactions gave good yields of 90% and 91% without any self‐coupling by‐product.  相似文献   

12.
A palladium‐catalyzed C(sp3)−C(sp2) Suzuki–Miyaura cross‐coupling of aryl boronic acids and α‐(trifluoromethyl)benzyl tosylates is reported. A readily available, air‐stable palladium catalyst was employed to access a wide range of functionalized 1,1‐diaryl‐2,2,2‐trifluoroethanes. Enantioenriched α‐(trifluoromethyl)benzyl tosylates were found to undergo cross‐coupling to give the corresponding enantioenriched cross‐coupled products with an overall inversion in configuration. The crucial role of the CF3 group in promoting this transformation is demonstrated by comparison with non‐fluorinated derivatives.  相似文献   

13.
We herein report an enantioselective palladium‐catalyzed cross‐coupling between α‐bromo carboxamides and aryl boronic acids, generating a series of chiral α‐aryl carboxamides in good yields and excellent enantioselectivities. The development of a chiral P,P=O ligand was critical in overcoming the second transmetalation issue and allows the first asymmetric palladium‐catalyzed coupling of α‐bromo carbonyl compounds.  相似文献   

14.
A series of new 2‐substituted thiazolidine‐4‐carboxamide derivatives which have potentially useful immunological properties, have been synthesized in a stereoselective manner by coupling 2‐subsituted thiazolidine‐4‐carboxylic acids with amines or amino esters. The structure of these compounds was established by combination of NMR methods and by X‐ray analysis.  相似文献   

15.
Application of the Suzuki cross‐coupling reaction for efficient synthesis of diverse substituted biaryl‐chromen‐4‐ones using an optimized palladium(0) catalyst system is reported. The coupling of arylboronic acids with the resin‐bound bromoflavanones which were prepared by organoselenium‐induced regioselective intramolecular cyclization of bromo‐2‐hydroxylchalcones proceeded smoothly. Biaryl‐chromen‐4‐ones were synthesized by subsequent selenoxide syn‐elimination in good total yields.  相似文献   

16.
A nickel‐catalyzed conjunctive cross‐coupling of alkenyl carboxylic acids, aryl iodides, and aryl/alkenyl boronic esters is reported. The reaction delivers the desired 1,2‐diarylated and 1,2‐arylalkenylated products with excellent regiocontrol. To demonstrate the synthetic utility of the method, a representative product is prepared on gram scale and then diversified to eight 1,2,3‐trifunctionalized building blocks using two‐electron and one‐electron logic. Using this method, three routes toward bioactive molecules are improved in terms of yield and/or step count. This method represents the first example of catalytic 1,2‐diarylation of an alkene directed by a native carboxylate group.  相似文献   

17.
Methods for the chemoselective modification of amino acids and peptides are powerful techniques in biomolecular chemistry. Among other applications, they enable the total synthesis of artificial peptides. In recent years, significant momentum has been gained by exploiting palladium‐catalyzed cross‐coupling for peptide modification. Despite major advances, the prefunctionalization elements on the coupling partners translate into undesired byproduct formation and lengthy synthetic operations. In sharp contrast, we herein illustrate the unprecedented use of versatile ruthenium(II)carboxylate catalysis for the step‐economical late‐stage diversification of α‐ and β‐amino acids, as well as peptides, through chemo‐selective C−H arylation under racemization‐free reaction conditions. The ligand‐accelerated C−H activation strategy proved water‐tolerant and set the stage for direct fluorescence labelling as well as various modes of peptide ligation with excellent levels of positional selectivity in a bioorthogonal fashion. The synthetic utility of our approach is further demonstrated by twofold C−H arylations for the complexity‐increasing assembly of artificial peptides within a multicatalytic C−H activation manifold.  相似文献   

18.
A new radical‐based coupling method has been developed for the single‐step generation of various γ‐amino acids and α,β‐diamino acids from α‐aminoacyl tellurides. Upon activation by Et3B and O2 at ambient temperature, α‐aminoacyl tellurides were readily converted into α‐amino carbon radicals through facile decarbonylation, which then reacted intermolecularly with acrylates or glyoxylic oxime ethers. This mild and powerful method was effectively incorporated into expeditious synthetic routes to the pharmaceutical agent gabapentin and the natural product (?)‐manzacidin A.  相似文献   

19.
N‐Methyl β‐amino acids are generally required for application in the synthesis of potentially bioactive modified peptides and other oligomers. Previous work highlighted the reductive cleavage of 1,3‐oxazolidin‐5‐ones to synthesise N‐methyl α‐amino acids. Starting from α‐amino acids, two approaches were used to prepare the corresponding N‐methyl β‐amino acids. First, α‐amino acids were converted to N‐methyl α‐amino acids by the so‐called ‘1,3‐oxazolidin‐5‐one strategy’, and these were then homologated by the Arndt–Eistert procedure to afford N‐protected N‐methyl β‐amino acids derived from the 20 common α‐amino acids. These compounds were prepared in yields of 23–57% (relative to N‐methyl α‐amino acid). In a second approach, twelve N‐protected α‐amino acids could be directly homologated by the Arndt–Eistert procedure, and the resulting β‐amino acids were converted to the 1,3‐oxazinan‐6‐ones in 30–45% yield. Finally, reductive cleavage afforded the desired N‐methyl β‐amino acids in 41–63% yield. One sterically congested β‐amino acid, 3‐methyl‐3‐aminobutanoic acid, did give a high yield (95%) of the 1,3‐oxazinan‐6‐one ( 65 ), and subsequent reductive cleavage gave the corresponding AIBN‐derived N‐methyl β‐amino acid 61 in 71% yield (Scheme 2). Thus, our protocols allow the ready preparation of all N‐methyl β‐amino acids derived from the 20 proteinogenic α‐amino acids.  相似文献   

20.
A unique nickel/organic photoredox co‐catalyzed asymmetric reductive cross‐coupling between α‐chloro esters and aryl iodides is developed. This cross‐electrophile coupling reaction employs an organic reductant (Hantzsch ester), whereas most reductive cross‐coupling reactions use stoichiometric metals. A diverse array of valuable α‐aryl esters is formed under these conditions with high enantioselectivities (up to 94 %) and good yields (up to 88 %). α‐Aryl esters represent an important family of nonsteroidal anti‐inflammatory drugs. This novel synergistic strategy expands the scope of Ni‐catalyzed reductive asymmetric cross‐coupling reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号