首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The reactivity of TiCp2Cl2 (d0) towards Zintl clusters was studied in liquid ammonia (Cp=cyclopentadienyl). Reduction of TiIVCp2Cl2 and ligand exchange led to the formation of [TiIIICp2(NH3)2]+, also obtainable by recrystallization of [CpTiIIICl]2. Upon reaction with [K4Sn9], ligand exchange leads to [TiCp21‐Sn9)(NH3)]3?. A small variation of the stoichiometry led to the formation of [Ti(η4‐Sn8)Cp]3?, which cocrystallizes with [TiCp2(NH3)2]+ and [TiCp21‐Sn9)(NH3)]3?. Finally, the large intermetalloid cluster anion [Ti4Sn15Cp5]n? (n=4 or 5) was obtained from the reaction of K12Sn17 and TiCp2Cl2 in liquid ammonia. The isolation of three side products, [K([18]crown‐6)]Cp, [K([18]crown‐6)]Cp(NH3), and [K([2.2]crypt)]Cp, suggests a stepwise elimination of the Cl? and Cp? ligands from TiCp2Cl2 and thus gives a hint to the mechanism of the product formation in which [Ti(η4+2‐Sn8)Cp]3? has a key role.  相似文献   

2.
A new type of Zintl phase is presented that contains endohedrally filled clusters and that allows for the formation of intermetalloid clusters in solution by a one‐step synthesis. The intermetallic compound K5?xCo1?xSn9 was obtained by the reaction of a preformed Co? Sn alloy with potassium and tin at high temperatures. The diamagnetic saltlike ternary phase contains discrete [Co@Sn9]5? clusters that are separated by K+ ions. The intermetallic compound K5?xCo1?xSn9 readily and incongruently dissolves in ethylenediamine and in the presence of 4,7,13,16,21,24‐hexaoxa‐1,10‐diazabicyclo[8.8.8]hexacosane (2.2.2‐crypt), thereby leading to the formation of crystalline [K([2.2.2]crypt)]5[Co2Sn17]. The novel polyanion [Co2Sn17]5? contains two Co‐filled Sn9 clusters that share one vertex. Both compounds were characterized by single‐crystal X‐ray structure analysis. The diamagnetism of K5?xCo1?xSn9 and the paramagnetism of [K([2.2.2]crypt)]5[Co2Sn17] have been confirmed by superconducting quantum interference device (SQUID) and EPR measurements, respectively. Quantum chemical calculations reveal an endohedral Co1? atom in an [Sn9]4? nido cluster for [Co@Sn9]5? and confirm the stability of the paramagnetic [Co2Sn17]5? unit.  相似文献   

3.
The compound [K([2.2.2]crypt)]Cs7[Sn9]2(en)3 ( 1 ) was synthesized from an alloy of formal composition KCs2Sn9 by dissolving in ethylenediamine (en) followed by the addition of [2.2.2]crypt and toluene. 1 crystallizes in the orthorhombic space group Pcca with a = 45.38(2), b = 9.092(4), c = 18.459(8) Å, and Z = 4. The structure consists of Cs7[Sn9]2 layers which contain [Sn9]4– anions and Cs+ cations. The layers are separated by [K([2.2.2]crypt)]+ units. In the intermetallic slab (Cs7[Sn9]2) compares the arrangement of pairs of symmetry‐related [Sn9]4– anions with the dimer ([Ge9]–[Ge9])6– in [K([2.2.2]crypt)]2Cs4([Ge9]–[Ge9]), in which the clusters are linked by a cluster‐exo bond. The shortest distance between atoms of such two clusters in 1 is 4.762 Å, e. g. there are no exo Sn‐Sn bonds. The [Sn9]4– anion has almost perfect C4v‐symmetry.  相似文献   

4.
The reactions between K5Bi4, [(C6H6)Cr(CO)3] or [(C7H8)Mo(CO)3], and [2.2.2]crypt in liquid ammonia yielded the compounds [K([2.2.2]crypt)]33‐Bi3)M(CO)3 · 10NH3 (M = Cr, Mo), which crystallize isostructurally in P21/n. Both contain an 18 valence electron piano‐stool complex with a η3‐coordinated Bi3‐ring ligand. The Bi–Bi distances range from 2.9560(5) to 2.9867(3) Å and are slightly shorter than known Bi–Bi single bonds but longer than Bi–Bi double bonds. The newly found compounds complete the family of similar complexes with E3‐ring ligands (E = P‐Bi).  相似文献   

5.
From the dark‐purple solution of the Zintl phase KBi in liquid ammonia dark‐blue crystals of the ammonia solvate K6[Bi4](NH3)8 were obtained. In contrast to known Bin polyanions the chemical bond in the anion [Bi4]6– is in accordance with the (8‐N) rule featuring solely Bi–Bi single bonds. [Bi4]6– is a butane‐analog valence compound, and with 6 negative charges per 4 atoms it is the anion with the highest known charge per atom obtained from solution. The planarity of the trans‐[Bi4]6– unit hints at π orbital contributions of the bismuth atoms. The corresponding reactions of the phases K5Bi4 and K3Bi2 in liquid ammonia in the presence of [2.2.2]crypt(4, 7, 13, 16, 21, 24‐hexaoxa‐1, 10‐diazabicyclo‐[8.8.8]hexacosane) lead to the salt [K([2.2.2]crypt)]2[Bi2](NH3)4 with the known electron‐deficient [Bi2]2– polyanion and a Bi=Bi double bond.  相似文献   

6.
The synthesis and structural characterization of the first coordination compounds of bis(diphosphacyclobutadiene) cobaltate anions [M(P2C2R2)2]? is described. Reactions of the new potassium salts [K(thf)3{Co(η4‐P2C2tPent2)2}] ( 1 ) and [K(thf)4{Co(η4‐P2C2Ad2)2}] ( 2 ) with [AuCl(tht)] (tht=tetrahydrothiophene), [AuCl(PPh3)] and Ag[SbF6] afforded the complexes [Au{Co(P2C2tPent2)2}(PMe3)2] ( 3 ), [Au{Co(P2C2Ad2)2}]x ( 4 ), [Ag{Co(P2C2Ad2)2}]x ( 5 ), [Au(PMe3)4][Au{Co(P2C2Ad2)2}2] ( 6 ), [K([18]crown‐6)(thf)2][Au{Co(P2C2Ad2)2}2] ( 7 ), and [K([18]crown‐6)(thf)2][M{Co(P2C2Ad2)2}2] ( 8 : M=Au 9 : M=Ag) in moderate yields. The molecular structures of 2 and 3 , and 6 – 9 were elucidated by X‐ray crystallography. Complexes 4 – 9 were thoroughly characterized by 31P and 13C solid state NMR spectroscopy. The complexes [Au{Co(P2C2Ad2)2}]x ( 4 ) and [Ag{Co(P2C2Ad2)2}]x ( 5 ) exist as coordination polymers in the solid state. The linking mode between the monomeric units in the polymers is deduced. The soluble complexes 1 – 3 , 6 , and 7 were studied by multinuclear 1H‐, 31P{1H}‐, and 13C{1H} NMR spectroscopy in solution. Variable temperature NMR measurements of 3 and 6 in deuterated THF reveal the formation of equilibria between the ionic species [Au(PMe3)4]+, [Au(PMe3)2]+, [Co(P2C2R2)2]?, and [Au{Co(P2C2R2)2}2]? (R=tPent and Ad).  相似文献   

7.
《中国化学快报》2023,34(1):107207
To investigate the reactivity of homoatomic clusters [E9]4? (E = Si-Pb) and intermetalloid clusters [M@E9]q?, the reactions of the Zintl anions [Sn9]4? and [Ni@Sn9]4? with the CdMes2 (Mes = Mesitylene) in the presence of 2.2.2-crypt were carried out. Two new compounds [K(2.2.2-crypt)]6[(Sn9)Cd(Sn9)]·en (1) and [K(2.2.2-crypt)]6[(Ni@Sn9)Cd(Ni@Sn9)]·en (2) were afforded. Both 1 and 2 were characterized by single-crystal X-ray diffraction, energy dispersive X-ray (EDX), and electrospray ionization mass spectrometry (ESI-MS), and can be viewed as two [Sn9]4? or [Ni@Sn9]4? subunits bridged by Cd ion in an η3:η3 coordination mode. Quantum chemical calculations reveal the relationships between the geometries and electronic structures of clusters 2a, [Ni3Ge18]4? and [Cu4@Sn18]4?. Further electron localization technique (AdNDP method) was performed to explain chemical bonding patterns of 1a.  相似文献   

8.
The chemistry of coinage metal bis(triflyl)imides of technological interest, CuNTf2 and AgNTf2, their synthesis and complexes with excess of comparatively weakly coordinating NTf2? as well as with ether, olefins, and the arene mesitylene are described. The existence of the solvent‐free pure phase [CuNTf2] has not been evidenced so far. Contrary to the literature, in which the preparation of [CuNTf2] is supposed to be carried out by reacting mesityl copper, [Cu(Mes)]5, and HNTf2, we found that in fact this reaction leads reproducibly to the interesting copper diarene sandwich complex [Cu(η3‐MesH)2][Cu(NTf2)2] ( 1 ) (MesH=1,3,5‐trimethylbenzene). The unexpectedly stable molecular etherate [Cu(Et2O)(NTf2)] ( 2 ) turned out to be the best precursor for CuNTf2 having only an inert and easily exchangeable solvent ligand. The coordination mode of NTf2? in 1 and 2 as well as in the hitherto unknown crystalline phase of [AgNTf2] ( 3 ) is described. The complex formation, which takes place when dissolving 2 or 3 in the room temperature ionic liquid (RTIL) [emim]NTf2 ([emim]+=1‐ethyl‐3‐methylimidazolium), has been studied. Furthermore, the reaction of 1 – 3 towards the diolefins 1,5‐cyclooctadiene (COD), 2,5‐norbornadiene (NBD) and isoprene (2‐methylbuta‐1,3‐diene) and towards ethylene has been investigated. The products 4 – 13 of these conversions have been isolated and fully characterized by NMR‐ and IR spectroscopies, mass spectrometry, and elemental‐ and XRD analyses. The potential of [Cu(η3‐MesH)2][Cu(NTf2)2] ( 1 ), [Cu(Et2O)(NTf2)] ( 2 ) and [AgNTf2] ( 3 ) as well as of [emim][M(NTf2)2] (M=Cu 4 , Ag 5 ) as chemisorbers for ethylene was studied by NMR spectroscopy.  相似文献   

9.
The endohedral stannaspherene cluster anion [Ir@Sn12]3? was synthesized in two steps. The reaction of K4Sn9 with [IrCl(cod)]2 (cod: 1,5‐cyclooctadienyl) in ethylenediamine (en) solution first yielded the [K(2,2,2‐crypt)]+ salt (2,2,2‐crypt: 4,7,13,16,21,24‐hexaoxa‐1,10‐diazabicyclo[8.8.8]hexacosane) of the capped cluster anion [Sn9Ir(cod)]3?. Subsequently, crystals of this compound were dissolved in en, followed by the addition of triphenylphosphine or 1,2‐bis(diphenylphosphino)ethane and treatment at elevated temperatures. [Ir@Sn12]3? was obtained and characterized as the [K(2,2,2‐crypt)]+ salt. The isolation of [Sn9Ir(cod)]3? as an intermediate product establishes that the formation of the stannaspherene [Ir@Sn12]3? occurs through the oxidation of [Sn9Ir(cod)]3?. Among the structurally characterized tetrel cluster anions, [Ir@Sn12]3? is a unique example of a stannaspherene, and one of the rare spherical clusters encapsulating a metal atom that is not a member of Group 10. Single‐crystal structure determination shows that the novel Zintl ion cluster has nearly perfect icosahedral Ih point symmetry.  相似文献   

10.
The reaction of diphenyltin dichloride with the binary Zintl phase K4Sn9 in the presence of excess lithium and 18‐crown‐6 in liquid ammonia led to the ammoniate [K(18‐crown‐6)(NH3)2]2Sn2Ph4 ( 1 ). The analogous reaction with K4Ge9 and potassium in the absence of further alkali metal ligands resulted in the compound [K2(NH3)12]Sn6Ph12 ? 4 NH3 ( 3 ). Cs6[Sn4Ph4](NH2)2 ? 8 NH3 ( 2 ) was prepared by reacting diphenyltin dichloride with a surplus of caesium in liquid ammonia. The low‐temperature single‐crystal structure determinations show all compounds to contain phenyl‐substituted polyanions of tin. Compound 1 is built from Sn2Ph anions consisting of Sn dumbbells with two Ph substituents at each Sn‐atom. Compound 2 contains cyclo‐Sn4Ph anions formed by a four‐membered tin ring in butterfly conformation with one Ph substituent at each Sn‐atom in an (all‐trans)‐configuration. Sn6Ph in 3 is a zig‐zag Sn6 chain with two substituents at each of the Sn‐atoms. Both 1 and 3 have molecular counter cations, in the latter case the unprecedented dinuclear potassiumammine complex [K2(NH3)12]2+ is observed. Compound 2 shows a complicated three‐dimensional network of Cs? Sn interactions.  相似文献   

11.
Reactions of [K(18‐crown‐6)]2[Pb2Se3] and [K([2.2.2]crypt)]2[Pb2Se3] with [Rh(PPh3)3Cl] in en (ethane‐1,2‐diamine) afforded ionic compounds with [Rh3(PPh3)63‐Se)2]? and [Rh3(CN)2(PPh3)43‐Se)2(μ‐PbSe)]3? anions, respectively. The latter contains a PbSe ligand, a rather uncommon homologue of CO that acts as a μ‐bridge between two Rh atoms. Quantum chemical calculations yield a significantly higher bond energy for PbSe than for CO, since the size of the ligand orbitals better matches the comparably rigid Rh‐Se‐Rh angles and the resulting Rh???Rh distance. To rationalize the bent coordination of the ligand, orbitals with significant ligand contributions and their dependence on the bonding angle were investigated in detail.  相似文献   

12.
Until now, polycyclic bismuth polyanions have not been known—thus discriminating bismuth from its lighter congeners. However, the synthesis of [K([2.2.2]crypt)]3(Bi11)?2 py?tol, allows us to present the first structurally characterized homoatomic, polycyclic bismuth polyanion, which exhibits the [P11]3? “ufosan” structure. It was obtained upon treatment of [K([2.2.2]crypt)]2(GaBi3)?en with the solvent pyridine. The binary Zintl anion [GaBi3]2? decomposes under oxidative coupling of pyridine molecules and release of H2 to form the title compound. The unprecedented reaction, its products and by‐products were investigated by means of spectroscopy, spectrometry, and DFT studies. All findings reveal the specific reaction conditions to be crucial for the formation of the [Bi11]3? ion—and indicate the possibility of the generation and isolation of further, large bismuth polyanions.  相似文献   

13.
Treatment of (NH4)[Au(D‐Hpen‐S)2](D‐H2pen = D‐penicillamine) with CoCl2·6H2O in an acetate buffer solution, followed by air oxidation, gave neutral AuICoIII and anionic AuI3CoIII2 polynuclear complexes, [Au3Co3(D‐pen‐N,O,S)6]([ 1 ]) and [Au3Co2(D‐pen‐N,S)6]3? ([ 2 ]3?), which were separated by anion‐exchange column chromatography. Complexes [ 1 ] and [ 2 ]3? each formed a single isomer, and their structures were determined by single‐crystal X‐ray crystallography. In [ 1 ], each of three [Au(D‐pen‐S)2]3?metalloligands coordinates to two CoIII ions in a bis‐tridentate‐N,O,S mode to form a cyclic AuI3CoIII3 hexanuclear structure, in which three [Co(D‐pen‐N,O,S)2]? octahedral units and six bridging S atoms adopt trans(O) geometrical and R chiral configurations, respectively. In [ 2 ]3?, each of three [Au(D‐pen‐S)2]3? metalloligands coordinates to two CoIII ions in a bis‐bidentate‐N,S mode to form a AuI3CoIII2 pentanuclear structure, in which two [Co(D‐pen‐N,S)3]3? units and six bridging S atoms adopt ∧ and R chiral configurations, respectively.  相似文献   

14.
Reaction of cyclooctatetraene (COT) iron(II) tricarbonyl, [Fe(cot)(CO)3], with one equivalent of K4Ge9 in ethylenediamine (en) yielded the cluster anion [Ge8Fe(CO)3]3? which was crystallographically‐characterized as a [K(2,2,2‐crypt)]+ salt in [K(2,2,2‐crypt)]3[Ge8Fe(CO)3]. The chemically‐reduced organometallic species [Fe(η3‐C8H8)(CO)3]? was also isolated as a side‐product from this reaction as [K(2,2,2‐crypt)][Fe(η3‐C8H8)(CO)3]. Both species were further characterized by EPR and IR spectroscopy and electrospray mass spectrometry. The [Ge8Fe(CO)3]3? cluster anion represents an unprecedented functionalized germanium Zintl anion in which the nine‐atom precursor cluster has lost a vertex, which has been replaced by a transition‐metal moiety.  相似文献   

15.
The first crystallographically characterizable complex of Sc2+, [Sc(NR2)3] (R=SiMe3), has been obtained by LnA3/M reactions (Ln=rare earth metal; A=anionic ligand; M=alkali metal) involving reduction of Sc(NR2)3 with K in the presence of 2.2.2‐cryptand (crypt) and 18‐crown‐6 (18‐c‐6) and with Cs in the presence of crypt. Dark maroon [K(crypt)]+, [K(18‐c‐6)]+, and [Cs(crypt)]+ salts of the [Sc(NR2)3] anion are formed, respectively. The formation of this oxidation state of Sc is also indicated by the eight‐line EPR spectra arising from the I =7/2 45Sc nucleus. The Sc(NR2)3 reduction differs from Ln(NR2)3 reactions (Ln=Y and lanthanides) in that it occurs under N2 without formation of isolable reduced dinitrogen species. [K(18‐c‐6)][Sc(NR2)3] reacts with CO2 to produce an oxalate complex, {K2(18‐c‐6)3}{[(R2N)3Sc]2(μ‐C2O4κ 1O:κ 1O′′)}, and a CO2 radical anion complex, [(R2N)3Sc(μ‐OCO‐κ 1O:κ 1O′)K(18‐c‐6)]n .  相似文献   

16.
Reactions of the binary, pseudo‐homoatomic Zintl anion (Pb2Bi2)2? with Ln(C5Me4H)3 (Ln=La, Ce, Nd, Gd, Sm, Tb) in the presence of [2.2.2]crypt in ethane‐1,2‐diamine/toluene yielded ten [K([2.2.2]crypt)]+ salts of lanthanide‐doped semimetal clusters with 13 or 14 surface atoms. Single‐crystal X‐ray diffraction and energy‐dispersive Xray spectroscopy indicated the presence of the anions [Ln@Pb6Bi8]3?, [Ln@Pb3Bi10]3?, [Ln@Pb7Bi7]4?, or [Ln@Pb4Bi9]4? in single or double salts; the latter showed various ratios of the components in the solid state. The anions are the first ternary intermetalloid clusters comprising only elements of the sixth period of the periodic table, namely, Pb, Bi and lanthanides. This study, which was complemented by ESI mass spectrometry and 139La NMR spectroscopy in solution, rationalizes a continuous development of the ratio of 13:14‐atom cages with the ionic radius of the embedded Ln3+ ion, which seems to select the most suitable cage type. Quantum chemical investigations helped to analyze this situation in more detail and to explain the observed subtle influence of the atomic radii. Magnetic measurements confirmed that the embedded Ln3+ ions keep their expected paramagnetic or diamagnetic nature.  相似文献   

17.
We report on the structures of three unprecedented heteroleptic Sb‐centered radicals [L(Cl)Ga](R)Sb. ( 2‐R , R=B[N(Dip)CH]2 2‐B , 2,6‐Mes2C6H3 2‐C , N(SiMe3)Dip 2‐N ) stabilized by one electropositive metal fragment [L(Cl)Ga] (L=HC[C(Me)N(Dip)]2, Dip=2,6‐i‐Pr2C6H3) and one bulky B‐ ( 2‐B ), C‐ ( 2‐C ), or N‐based ( 2‐N ) substituent. Compounds 2‐R are predominantly metal‐centered radicals. Their electronic properties are largely influenced by the electronic nature of the ligands R, and significant delocalization of unpaired‐spin density onto the ligands was observed in 2‐B and 2‐N . Cyclic voltammetry (CV) studies showed that 2‐B undergoes a quasi‐reversible one‐electron reduction, which was confirmed by the synthesis of [K([2.2.2]crypt)][L(Cl)GaSbB[N(Dip)CH]2] ([K([2.2.2]crypt)][ 2‐B ]) containing the stibanyl anion [ 2‐B ]?, which was shown to possess significant Sb?B multiple‐bonding character.  相似文献   

18.
The synthesis of new molecular complexes of U2+ has been pursued to make comparisons in structure, physical properties, and reactivity with the first U2+ complex, [K(2.2.2‐cryptand)][Cp′3U], 1 (Cp′=C5H4SiMe3). Reduction of Cp′′3U [Cp′′=C5H3(SiMe3)2] with KC8 in the presence of 2.2.2‐cryptand or 18‐crown‐6 generates [K(2.2.2‐cryptand)][Cp′′3U], 2‐K(crypt) , or [K(18‐crown‐6)(THF)2][Cp′′3U], 2‐K(18c6) , respectively. The UV/Vis spectra of 2‐K and 1 are similar, and they are much more intense than those of U3+ analogues. Variable temperature magnetic susceptibility data for 1 and 2‐K(crypt) reveal lower room temperature χMT values relative to the experimental values for the 5f3 U3+ precursors. Stability studies monitored by UV/Vis spectroscopy show that 2‐K(crypt) and 2‐K(18c6) have t1/2 values of 20 and 15 h at room temperature, respectively, vs. 1.5 h for 1 . Complex 2‐K(18c6) reacts with H2 or PhSiH3 to form the uranium hydride, [K(18‐crown‐6)(THF)2][Cp′′3UH], 3 . Complexes 1 and 2‐K(18c6) both reduce cyclooctatetraene to form uranocene, (C8H8)2U, as well as the U3+ byproducts [K(2.2.2‐cryptand)][Cp′4U], 4 , and Cp′′3U, respectively.  相似文献   

19.
Crystal Structure of (NH4)3SnF7: A Double Salt According to (NH4)3[SnF6]F and not (NH4)4SnF8 (NH4)3SnF7 is obtained as colourless single crystals from the reaction of NH4HF2 with tin powder at 300°C. The crystal structure (cubic, Pm3m, Z = 1, a = 602.5(1) pm at 293 K; a = 598.0(1) pm at 100 K) contains [SnF6]2? octahedra and lonesome F? ions surrounded by NH4+ cations only; it may be considered as a derivative of the Cu3Au-type of structure according to Cu3[Au]□ ?(NH4)3[SnF6]F. The F? ions of the [SnF6]2? octahedra with their Sn4+ centre in the origin of the unit cell at m3m are disordered in different ways at 293 and 100 K, respectively.  相似文献   

20.
The first crystallographically characterizable complex of Sc2+, [Sc(NR2)3] (R=SiMe3), has been obtained by LnA3/M reactions (Ln=rare earth metal; A=anionic ligand; M=alkali metal) involving reduction of Sc(NR2)3 with K in the presence of 2.2.2‐cryptand (crypt) and 18‐crown‐6 (18‐c‐6) and with Cs in the presence of crypt. Dark maroon [K(crypt)]+, [K(18‐c‐6)]+, and [Cs(crypt)]+ salts of the [Sc(NR2)3] anion are formed, respectively. The formation of this oxidation state of Sc is also indicated by the eight‐line EPR spectra arising from the I =7/2 45Sc nucleus. The Sc(NR2)3 reduction differs from Ln(NR2)3 reactions (Ln=Y and lanthanides) in that it occurs under N2 without formation of isolable reduced dinitrogen species. [K(18‐c‐6)][Sc(NR2)3] reacts with CO2 to produce an oxalate complex, {K2(18‐c‐6)3}{[(R2N)3Sc]2(μ‐C2O4κ 1O:κ 1O′′)}, and a CO2 radical anion complex, [(R2N)3Sc(μ‐OCO‐κ 1O:κ 1O′)K(18‐c‐6)]n .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号