首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
The effect of radioactive UO22+ on the oxygen‐transporting capability of hemoglobin‐based oxygen carriers has been investigated in vitro. The hemoglobin (Hb) microspheres fabricated by the porous template covalent layer‐by‐layer (LbL) assembly were utilized as artificial oxygen carriers and blood substitutes. Magnetic nanoparticles of iron oxide (Fe3O4) were loaded in porous CaCO3 particles for magnetically assisted chemical separation (MACS). Through the adsorption spectrum of magnetic Hb microspheres after adsorbing UO22+, it was found that UO22+ was highly loaded in the magnetic Hb microspheres, and it shows that the presence of UO22+ in vivo destroys the structure and oxygen‐transporting capability of Hb microspheres. In view of the high adsorption capacity of UO22+, the as‐assembled magnetic Hb microspheres can be considered as a novel, highly effective adsorbent for removing metal toxins from radiation‐contaminated bodies, or from nuclear‐power reactor effluent before discharge into the environment.  相似文献   

2.
Nanosheet‐assembled hierarchical V2O5 hollow microspheres are successfully obtained from V‐glycolate precursor hollow microspheres, which in turn are synthesized by a simple template‐free solvothermal method. The structural evolution of the V‐glycolate hollow microspheres has been studied and explained by the inside‐out Ostwald‐ripening mechanism. The surface morphologies of the hollow microspheres can be controlled by varying the mixture solution and the solvothermal reaction time. After calcination in air, hierarchical V2O5 hollow microspheres with a high surface area of 70 m2 g?1 can be obtained and the structure is well preserved. When evaluated as cathode materials for lithium‐ion batteries, the as‐prepared hierarchical V2O5 hollow spheres deliver a specific discharge capacity of 144 mA h g?1 at a current density of 100 mA g?1, which is very close to the theoretical capacity (147 mA h g?1) for one Li+ insertion per V2O5. In addition, excellent rate capability and cycling stability are observed, suggesting their promising use in lithium‐ion batteries.  相似文献   

3.
Simple and stable synthesis of transition metal sulfides and clarification of their growth mechanisms are of great importance for developing catalysts, metal‐air batteries and other technologies. In this work, we developed a one‐step facile hydrothermal approach to successfully synthesize NiS2 microspheres. By changing the experimental parameters, the reason that affects the formation of nanostructured spheres is investigated and discussed in detail, and the formation mechanism of microspheres is proposed innovatively. Furthermore, electrochemical testing results show that the 7 h‐NiS2 catalyst exhibits a remarkable oxygen evolution reaction (OER) activity with an overpotential of 311 mV at 10 mA cm?2 in 1.0 M KOH, superior to precious metal RuO2. The NiS2 catalyst also exhibits a robust durability. This work will contributes to the rational design and the understanding of growth mechanism of transition metal chalcogenide electrocatalysts for diverse energy conversion technologies.  相似文献   

4.
Chloridrate of pyridoxine (vitamin B6) reacts with UO2(NO3)2·6H2O in acetonitril containing triethylamine to give the complex salt [UO2(PN)2(H2O)]Cl2. The structure of the novel compound was analyzed by single crystal X‐ray diffraction affording the centrosymmetric triclinic space group . In [UO2(PN)2(H2O)]2+ two zwitterionic pyridoxine molecules complex the uranium atom in a planar manner with a water molecule achieving the coordination of a semi planar pentagon. The two uranyl oxo ligands set the axis of a distorted pentagonal bipyramide. The ability of vitamin B6 pyridoxine to react with UO22+ allowing the chelation of one uranium atom represents a very specific model of assimilation of uranium by living beings. It could also explain the serious damages caused by heavy or radioactive metals like uranium since their complexation “in vivo” by enzymatic systems like pyridoxal phosphate‐containing enzymes would lead to a modification of the prosthetic groups of the metalloenzymes with loss of their catalytic activities.  相似文献   

5.
By using carbon nanotubes (CNTs) as a shape template and glucose as a carbon precursor and structure‐directing agent, CNT@Fe3O4@C porous core/sheath coaxial nanocables have been synthesized by a simple one‐pot hydrothermal process. Neither a surfactant/ligand nor a CNT pretreatment is needed in the synthetic process. A possible growth mechanism governing the formation of this nanostructure is discussed. When used as an anode material of lithium‐ion batteries, the CNT@Fe3O4@C nanocables show significantly enhanced cycling performance, high rate capability, and high Coulombic efficiency compared with pure Fe2O3 particles and Fe3O4/CNT composites. The CNT@Fe3O4@C nanocables deliver a reversible capacity of 1290 mA h g?1 after 80 cycles at a current density of 200 mA g?1, and maintain a reversible capacity of 690 mA h g?1 after 200 cycles at a current density of 2000 mA g?1. The improved lithium storage behavior can be attributed to the synergistic effect of the high electronic conductivity support and the inner CNT/outer carbon buffering matrix.  相似文献   

6.
Cobalt ion‐based coordination polymer nanowires were synthesized by using nitrilotriacetic acid (NA) as a chelating agent by a one‐step hydrothermal approach. In the synthesis, cobalt ions were bonded with amino or carboxyl groups of NA to form one‐dimension polymer nanowires, which can be confirmed by FTIR and TGA results. Our experimental results show that the morphologies of polymer nanowires greatly depend on the precursor salts, ratios between deionized water and isopropyl alcohol. The probable molecular formula and growth mechanism have been proposed. After heat treatment, the cobalt ion‐based coordination polymer nanowires can be converted into porous Co3O4 nanowires, which completely preserved the nanowire‐like morphology. When used as anodes in lithium‐ion batteries, the obtained porous Co3O4 nanowires exhibited a high reversible capacity of 810 mA h g?1 and stable cyclic retention at 30th cycle. The good electrochemical performance could be attributed to the porous nanostructure of Co3O4, which provides pathways for easy accessibility of electrolytes and fast transportation of lithium ions.  相似文献   

7.
Kinetics of the substitution reaction of solvent molecule in uranyl(VI) Schiff base complexes by tri‐n‐butylposphine as the entering nucleophile in acetonitrile at 10–40°C was studied spectrophotometrically. The second‐order rate constants for the substitution reaction of the solvent molecule were found to be (8.8 ± 0.5) × 10?3, (5.3 ± 0.2) × 10?3, (7.5 ± 0.3) × 10?3, (6.1 ± 0.3) × 10?3, (13.5 ± 1.6) × 10?3, (13.2 ± 0.9) × 10?3, (52.9 ± 0.2) × 10?3, and (88.1 ± 0.6) × 10?3 M?1 s?1 at 40°C for [UO2(Schiff base)(CH3CN)], where Schiff base = L1–L8, respectively. In a temperature dependence study, the activation parameters ΔH# and ΔS# for the reaction of uranyl complexes with PBu3 were determined. From the linear rate dependence on the concentration of PBu3, the span of k2 values and the large negative values of the activation entropy, an associative (A) mechanism is deduced for the solvent substitution. By comparing the second‐order rate constants k2, it was concluded that the steric and the electronic properties of the complexes were important for the rate of the reactions.  相似文献   

8.
Novel inorganic–organic yolk–shell microspheres based on Preyssler‐type NaP5W30O11014? polyoxometalate and MIL‐101(Cr) metal–organic framework (P5W30/MIL‐101(Cr)) were synthesized by reaction of K12.5Na1.5[NaP5W30O110], Cr(NO3)3·9H2O and terephthalic acid under hydrothermal conditions at 200°C for 24 h. The as‐prepared yolk–shell microspheres were fully characterized using various techniques. All analyses confirmed the incorporation of the Preyssler‐type NaP5W30O11014? polyoxometalate into the three‐dimensional porous MIL‐101(Cr) metal–organic framework. The results revealed that P5W30/MIL‐101(Cr) demonstrated rapid adsorption of cationic methylene blue (MB) and rhodamine B (RhB) with ultrahigh efficiency and capacity, as well as achieving rapid and highly selective adsorption of MB from MB/MO (MO = methyl orange), MB/RhB and MB/RhB/MO mixtures. The P5W30/MIL‐101(Cr) adsorbent not only exhibited a high adsorption capacity of 212 mg g?1, but also could quickly remove 100% of MB from a dye solution of 50 mg l?1 within 8 min. The effects of some key parameters such as adsorbent dosage, initial dye concentration and initial pH on dye adsorption were investigated in detail. The equilibrium adsorption data were better fitted by the Langmuir isotherm. The adsorption kinetics was well modelled using a pseudo‐second‐order model. Also, the inorganic–organic hybrid yolk–shell microspheres could be easily separated from the reaction system and reused up to four times without any change in structure or adsorption ability. The stability and robustness of the adsorbent were confirmed using various techniques.  相似文献   

9.
Magnetic silica‐coated magnetite (Fe3O4) sub‐microspheres with immobilized metal‐affinity ligands are prepared for protein adsorption. First, magnetite sub‐microspheres were synthesized by a hydrothermal method. Then silica was coated on the surface of Fe3O4 particles using a sol–gel method to obtain magnetic silica sub‐microspheres with core‐shell morphology. Next, the trichloro(4‐chloromethylphenyl) silane was immobilized on them, reacted with iminodiacetic acid (IDA), and charged with Cu2+. The obtained magnetic silica sub‐microspheres with immobilized Cu2+ were applied for the absorption of bovine hemoglobin (BHb) and the removal of BHb from bovine blood. The size, morphology, and magnetic properties of the resulting magnetic micro(nano) spheres were investigated by using scanning microscopy (SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD), and a vibrating sample magnetometer (VSM). The measurements showed that the magnetic sub‐microspheres are spherical in shape, very uniform in size with a core‐shell, and are almost superparamagnetic. The saturation magnetization of silica‐coated magnetite (Fe3O4) sub‐microspheres reached about 33 emu g?1. Protein adsorption results showed that the sub‐microspheres had a high adsorption capacity for BHb (418.6 mg g?1), low nonspecific adsorption, and good removal of BHb from bovine blood. This opens a novel route for future applications in removing abundant proteins in proteomic analysis.  相似文献   

10.
High‐quality rare‐earth fluorides, α‐NaMF4 (M=Dy, Ho, Er, Tm, Y, Yb, and Lu) nanocrystals and β‐NaMF4 (M=Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Y, Yb, and Lu) nanoarrays, have been synthesized by using oleic acid as a stabilizing agent through a facile hydrothermal method at 130–230 °C. The phase, shape, and size of the products are varied by careful control of synthetic conditions, including hydrothermal temperature and time, and the amounts of reactants and solvents. Tuning the hydrothermal temperature, time, and the amount of NaOH can cause the transformation from the cubic α‐NaMF4 to hexagonal phase β‐NaMF4. Upon adjustment of the amount of NaOH, NaF, M3+, and ethanol, the morphologies for the β‐NaMF4 nanoarrays can range from tube, rod, wire, and zigzagged rod, to flower‐patterned disk. Simultaneously, the size of the rare‐earth fluoride crystals is variable from 5 nm to several micrometers. A combination of “diffusion‐controlled growth” and the “organic–inorganic interface effect” is proposed to understand the formation of the nanocrystals. An ideal “1D growth” of rare‐earth fluorides is preferred at high temperatures and high ethanol contents, from which the tube‐ and rodlike nanoarrays with high aspect ratio are obtained. In contrast, the disklike β‐NaMF4 nanoarrays with low aspect ratios are produced by decreasing the ethanol content or prolonging the reaction time, an effect probably caused by “1D/2D ripening”. Multicolor up‐conversion fluorescence is also successfully realized in the Yb3+/Er3+ (green, red) and Yb3+/Tm3+ (blue) co‐doped α‐NaYF4 nanocrystals and β‐NaYF4 nanoarrays by excitation in the NIR region (980 nm).  相似文献   

11.
Uranyl(VI) complexes [UO2(L)(solvent)], where L denotes an asymmetric N2O2 Schiff base (salpyr, 3-MeOsalpyr, 4-MeOsalpyr, 5-MeOsalpyr, 5-Clsalpyr or 5-Brsalpyr; salpyr is N,N′-bis(salicyliden)-2,3-diaminopyridine), were synthesized and characterized in solution (UV–vis, 1H NMR, cyclic voltammetry) and in the solid-state (X-ray crystallography, IR, TGA, C H N.). X-ray crystallography of UO2(3-MeOsalpyr) revealed coordination of the uranyl by the tetradentate Schiff base and one disordered solvent, resulting in seven-coordinate uranium. Another disordered solvent was not coordinated. Cyclic voltammetry of [UVIO2(L)(solvent)] in acetonitrile was used to investigate the effect of the substituents of the Schiff base ligands on oxidation and reduction potential. The quasi-reversible redox reaction without any successive reactions was accelerated by groups with lesser electron withdrawing. We also investigated the kinetics and mechanism of the exchange reaction of the coordinated solvent with tributylphosphine using spectrophotometric method. The second-order rate constants at four temperatures and activation parameters showed an associative mechanism for all corresponding complexes with the following trend: UO2(5-Clsalpyr)?>?UO2(5-Brsalpyr)?>?UO2(3-MeOsalpyr)?>?UO2(4-MeOsalpyr)?>?UO2(salpyr)?>?UO2(5-MeOsalpyr). It was concluded that the steric and electronic properties of the complexes were important for the reaction rate.  相似文献   

12.
A simple hydrothermal method has been developed to prepare hexagonal tablet precursors, which are then transformed into porous sodium‐doped Ni2P2O7 hexagonal tablets by a simple calcination method. The obtained samples were evaluated as electrode materials for supercapacitors. Electrochemical measurements show that the electrode based on the porous sodium‐doped Ni2P2O7 hexagonal tablets exhibits a specific capacitance of 557.7 F g?1 at a current density of 1.2 A g?1. Furthermore, the porous sodium‐doped Ni2P2O7 hexagonal tablets were successfully used to construct flexible solid‐state hybrid supercapacitors. The device is highly flexible and achieves a maximum energy density of 23.4 Wh kg?1 and a good cycling stability after 5000 cycles, which confirms that the porous sodium‐doped Ni2P2O7 hexagonal tablets are promising active materials for flexible supercapacitors.  相似文献   

13.
An iron‐containing mesoporous molecular sieve, or Fe‐MCM‐41, was successfully synthesized the via sol–gel technique using silatrane and FeCl3 as the silicon and iron sources, and was characterized using various techniques. Many factors were investigated, namely, reaction temperature and time, calcination rate, and iron amount in the reaction mixture. It was found that the optimum conditions in which to synthesize Fe‐MCM‐41 was to carry out the reaction at 60 °C for 7 h using a 1 °C min?1 calcination rate and a 550 °C calcination temperature. The catalytic activity and selectivity of styrene epoxidation using hydrogen peroxide showed that the selectivity of the styrene oxide reached 65% at a styrene conversion of 22% over the 1%wt catalyst. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
A novel visible‐light‐driven AgBr‐Ag‐BiOBr photocatalyst was synthesized by a facile hydrothermal method. Taking advantage of both p‐n heterojunctions and localized surface plasmon resonance, the p‐metal‐n structure exhibited a superior performance concerning degradation of methyl orange under visible‐light irradiation (λ>420 nm). A possible photodegradation mechanism in the presence of AgBr‐Ag‐BiOBr composites was proposed, and the radical species involved in the degradation reaction were investigated. HO2?/?O2? played the same important role as ?OH in the AgBr‐Ag‐BiOBr photocatalytic system, and both the electron and hole were fully used for degradation of organic pollutants. A dual role of metallic Ag in the photocatalysis was proposed, one being surface plasmon resonance and the other being an electron‐hole bridge. Due to the distinctive p‐metal‐n structure, the visible‐light absorption, the separation of photogenerated carriers and the photocatalysis efficiency were greatly enhanced.  相似文献   

15.
本文以KH560、苯乙烯、马来酸酐为连接组分,将二氧化钛接枝到聚(苯乙烯-二乙烯基苯)微球的表面,成功制备了无孔和多孔纳米复合微球。研究了硅烷偶联剂(KH560)和苯乙烯对二氧化钛在无孔微球表面的分散性和接枝数量以及支撑微球的多孔性质对接枝到微球内部的二氧化钛数量的影响。结果表明,KH560和苯乙烯能够提高二氧化钛在微球表面的分散性和稳定性,使二氧化钛以30-80nm的粒径接枝在微球表面。苯乙烯又能使二氧化钛在无孔微球表面的接枝数量从10.4%增大到20.4%。平均孔径为136nm的多孔微球为支撑微球得到的复合粒子中二氧化钛最高接枝量可达26%,明显高于无孔微球和平均孔径为31nm的多孔微球。  相似文献   

16.
Due to the unique size effects, nanomaterials in infrared absorption have attracted much attention for their strong absorption in the infrared region. To achieve the infrared multi‐band absorption, we propose to synthesize a core‐shell structure nanomaterial consisting of NaYF4:Yb3+, Er3+ core and a layer of SiO2 as shell. A series of NaYF4:Yb3+, Er3+ nanocrystals were synthesized through hydrothermal method by adjusting the ratio of citric acid(CA)‐to‐NaOH, and the effects of CA concentration, and NaOH concentration were studied in detail. NaYF4:Yb3+, Er3+@SiO2 nanoparticles were synthesized by sol‐gel method using TEOS as silica source. The results show that the core‐shell NaYF4:Yb3+, Er3+@SiO2 nanoparticles were successfully synthesized. Up‐conversion spectra of these nanoparticles were recorded with 980 nm laser excitation under room temperature. There are no changes of the emission centers of nanoparticles before or after silica coating, but the emission intensities of nanoparticles after silica coating are weakened. Furthermore, the property of infrared multi‐band absorption was tested through ultraviolet‐visible‐near infrared spectrophotometer and infrared absorption spectra. The results illustrate that the multi‐band infrared absorption nanomaterial was successfully synthesized.  相似文献   

17.
Tin‐based oxide Li2SnO3 has been synthesized by a hydrothermal route as negative material for lithium‐ion batteries. The microstructure and electrochemical properties of the as‐synthesized materials were investigated by some characterizations means and electrochemical measurements. The as‐synthesized Li2SnO3 is a porous rod, which is composed of many uniform and regular nano‐flakes with a size of 50–60 nm. Li2SnO3 also displays an electrochemical performance with high capacity and good cycling stability (510.2 mAh g?1 after 50 cycles at a current density of 60 mA g?1 between 0.0 V and 2.0 V verusus Li/Li+). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
MoO2 microspheres were synthesized by a facile wet chemical method using the molybdenum trioxide as an inorganic precursor and paraphenylendiamine as a reducing agent and also a template, via a hydrothermal way. The as prepared product was characterized by XRD, SEM, TEM, DTA–TG, and IR. It was found that this product was composed by MoO2 nanoparticles encapsulated into the organic shell microspheres with diameters of 1–3 μm. The influence of the temperature on the crystallinity of the products was investigated. Optimal conditions founded were: reaction temperature: 220 °C, reaction time: 72 h and cooling time remains unchanged. The possible formation mechanism of MoO2 microspheres was also discussed.  相似文献   

19.
The hydrothermal reaction of 2,3‐pyridinedicarboxylic acid (2,3‐H2pda) with a mixture of Cd(NO3)2 and Ni(NO3)2 afforded a coordination polymer, [CdNi(2,3‐pda)2(H2O)3] ( 1 ); in contrast, that with a mixture of Cd(NO3)2 and Zn(NO3)2 surprisingly produced a discrete molecule, trans‐[Cd(3‐pa)2(H2O)4] ( 2 ) (3‐pa? = 3‐pyridinecarboxylate). Since a direct reaction between a single metal salt, Cd(NO3)2 or Zn(NO3)2, and 3‐pyridinecarboxylic acid (3‐Hpa) under similar hydrothermal conditions yielded different coordination polymers containing 3‐pa?, it appears that the apparently thermal decarboxylation from ligated 2,3‐pda2? to 3‐pa? occurs after complexation of both metal cations, Cd(II) and Zn(II). A new coordination mode, formed for 2,3‐pda2? in structure 1 , appears to help formation of microporous channels by piling up the observed 2D hydrogen‐bonded heteropolynuclear layers. Each channel apparently consists of two interpenetrating 63 Cd(II) and Ni(II) nets.  相似文献   

20.
Ultrathin CeVO4 nanobelts were successfully synthesized by a hydrothermal method. The thickness of a single nanobelt is about 2.4 nm, which can effectively shorten the ion diffusion and fasten the charge pathway. More importantly, ultrathin CeVO4 nanobelts and graphene are easily assembled as a flexible all‐solid‐state asymmetric device, which shows a highly flexible property and achieves a maximum energy density of 0.78 mW h cm?3 and a high life cycle of >6000 cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号