首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
A modular synthetic approach to degradable metathesis polymers is presented using acetal‐containing enyne monomers. The monomers are prepared in a short and divergent synthetic sequence that features two points of modification to tune polymerization behavior and introduce molecular cargo. Steric and stereochemical elements are critical in the monomer design in order to provide rapid and living polymerizations capable of generating block polymers. The developed polyacetal materials readily undergo pH‐dependent degradation in aqueous mixtures, and the rate of hydrolysis can be tuned through post‐polymerization modification with triazolinedione click chemistry. This presents a new scaffold for responsive metathesis polymers that may find use in applications that requires controllable breakdown and release of small molecules.  相似文献   

2.
The synthesis of a series of novel, water‐soluble poly(organophosphazenes) prepared via living cationic polymerization is presented. The degradation profiles of the polyphosphazenes prepared are analyzed by GPC, 31P NMR spectroscopy, and UV–Vis spectroscopy in aqueous media and show tunable degradation rates ranging from days to months, adjusted by subtle changes to the chemical structure of the polyphosphazene. Furthermore, it is observed that these polymers demonstrate a pH‐promoted hydrolytic degradation behavior, with a remarkably faster rate of degradation at lower pH values. These degradable, water soluble polymers with controlled molecular weights and structures could be of significant interest for use in aqueous biomedical applications, such as polymer therapeutics, in which biological clearance is a requirement and in this context cell viability tests are described which show the non‐toxic nature of the polymers as well as their degradation intermediates and products. © 2013 The Authors Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 287–294  相似文献   

3.
An ideal vector in gene therapy should exhibit high serum stability, excellent biocompatibility, a desired transfection efficacy and permeability into targeted tissues. Here, we describe a class of low‐molecular‐weight fluorodendrimers for efficient gene delivery. These materials self‐assemble into uniform nanospheres and allow for efficient transfection at low charge ratios and very low DNA doses with minimal cytotoxicity. Our results demonstrate that these vectors combine the features of synthetic gene vectors such as liposomes and cationic polymers and present promising potential for clinical gene therapy.  相似文献   

4.
《化学:亚洲杂志》2018,13(19):2818-2823
The development of artificial self‐assembling systems with dynamic photo‐regulation features in aqueous solutions has drawn great attention owing to the potential applications in fabricating elaborate biological materials. Here we demonstrate the fabrication of water‐soluble cucurbit[8]uril (CB[8])‐mediated supramolecular polymers by connecting the fluorinated azobenzene (FAB) containing monomers through host‐enhanced heteroternary π–π stacking interactions. Benefiting from the unique visible‐light‐induced EZ photoisomerization of the FAB photochromophores, the encapsulation behaviors between the CB[8] macrocycle and the monomers could be regulated upon visible light irradiation, resulting in the depolymerization of such CB[8]‐mediated supramolecular polymers.  相似文献   

5.
The self‐assembly into supramolecular polymers is a process driven by reversible non‐covalent interactions between monomers, and gives access to materials applications incorporating mechanical, biological, optical or electronic functionalities. Compared to the achievements in precision polymer synthesis via living and controlled covalent polymerization processes, supramolecular chemists have only just learned how to developed strategies that allow similar control over polymer length, (co)monomer sequence and morphology (random, alternating or blocked ordering). This highlight article discusses the unique opportunities that arise when coassembling multicomponent supramolecular polymers, and focusses on four strategies in order to control the polymer architecture, size, stability and its stimuli‐responsive properties: (1) end‐capping of supramolecular polymers, (2) biomimetic templated polymerization, (3) controlled selectivity and reactivity in supramolecular copolymerization, and (4) living supramolecular polymerization. In contrast to the traditional focus on equilibrium systems, our emphasis is also on the manipulation of self‐assembly kinetics of synthetic supramolecular systems. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 34–78  相似文献   

6.
Inspired by biological polymers, sequence‐controlled synthetic polymers are highly promising materials that integrate the robustness of synthetic systems with the information‐derived activity of biological counterparts. Polymer–biopolymer conjugates are often targeted to achieve this union; however, their synthesis remains challenging. We report a stepwise solid‐phase approach for the generation of completely monodisperse and sequence‐defined DNA–polymer conjugates using readily available reagents. These polymeric modifications to DNA display self‐assembly and encapsulation behavior—as evidenced by HPLC, dynamic light scattering, and fluorescence studies—which is highly dependent on sequence order. The method is general and has the potential to make DNA–polymer conjugates and sequence‐defined polymers widely available.  相似文献   

7.
A series of brush‐like amphiphilic organopolysiloxanes with varying hydrophilic side‐chains was prepared, and the assembly behavior of these promising polymers was investigated in aqueous solution using a combination method of surface tension, steady‐state fluorescence, dynamic light scattering, and transmission electron microscopy. An increasing number of side‐chains could lead a higher surface tension of the polymer solution. The polymers formed regular “micelle‐like” spherical multipolymer assemblies in aqueous solution with the size distributed from the scale of hundreds to that of tens of nanometer, and the polymers that possessed more of the side‐chains would form comparatively loose and swollen assemblies with slightly higher micropolarities and bigger dimensions. The interesting discovery in this report was that the visible clearness of the solution could be improved by increasing the hydrophilicity of the assemblies in the solution. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
We have developed a facile synthesis of degradable polyperoxides by the radical alternating copolymerization of 1,3‐diene monomers with molecular oxygen at an atmospheric pressure. In this review, the synthesis, the degradation behavior, and the applications of functional polyperoxides are summarized. The alkyl sorbates as the conjugated 1,3‐dienes gave a regiospecific alternating copolymer by exclusive 5,4‐addition during polymerization and the resulting polyperoxides decomposed by the homolysis of a peroxy linkage followed by successive β‐scissions. The preference of 5,4‐addition was well rationalized by theoretical calculations. The degradation of the polyperoxides occurred with various stimuli, such as heating, UV irradiation, a redox reaction with amines, and an enzyme reaction. The various functional polyperoxides were synthesized by following two methods, one is the direct copolymerization of functional 1,3‐dienes, and the other is the functionalization of the precursor polyperoxides. Water soluble polyperoxides were also prepared, and the LCST behavior and the application to a drug carrier in the drug delivery system were investigated. In order to design various types of degradable polymers and gels we developed a method for the introduction of dienyl groups into the precursor polymers. The resulting dienyl‐functionalized polymers were used for the degradable gels. The degradable branched copolymers showed a microphase‐separated structure, which changed owing to the degradation of the polyperoxide segments. © 2009 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 9: 000–000; 2009: Published online in Wiley InterScience ( www.interscience.wiley.com ) DOI 10.1002/tcr.200900009  相似文献   

9.
Biodegradable polymeric materials are intensively used in biomedical applications. Of particular interest for drug‐delivery applications are polymers that are stable at pH 7.4, that is, in the blood stream, but rapidly hydrolyze under acidic conditions, such as those encountered in the endo/lysosome or the tumor microenvironment. However, an increase in the acidic‐degradation rate of acid‐labile groups goes hand in hand with higher instability of the polymer at pH 7.4 or during storage, thus posing an intrinsic limitation on fast degradation under acidic conditions. Herein, we report that a combination of acid‐labile dimethyldioxolane side chains and hydroxyethyl side chains leads to acid‐degradable thermoresponsive polymers that are quickly hydrolyzed under slightly acidic conditions but stable at pH 7.4 or during storage. We ascribe these properties to high hydration of the hydroxy‐containing collapsed polymer globules in conjunction with autocatalytic acceleration of the hydrolysis reactions by the hydroxy groups.  相似文献   

10.
A unique example of supramolecular polymerisation in water based on monomers with nanomolar affinities, which yield rod‐like materials with extraordinarily high thermodynamic stability, yet of finite length, is reported. A small library of charge‐neutral dendritic peptide amphiphiles was prepared, with a branched nonaphenylalanine‐based core that was conjugated to hydrophilic dendrons of variable steric demand. Below a critical size of the dendron, the monomers assemble into nanorod‐like polymers, whereas for larger dendritic side chains frustrated growth into near isotropic particles is observed. The supramolecular morphologies observed by electron microscopy, X‐ray scattering and diffusion NMR spectroscopy studies are in agreement with the mechanistic insights obtained from fitting polymerisation profiles: non‐cooperative isodesmic growth leads to degrees of polymerisation that match the experimentally determined nanorod contour lengths of close to 70 nm. The reported designs for aqueous self‐assembly into well‐defined anisotropic particles has promising potential for biomedical applications and the development of functional supramolecular biomaterials, with emerging evidence that anisotropic shapes in carrier design outperform conventional isotropic materials for targeted imaging and therapy.  相似文献   

11.
We have successfully synthesized a series of redox‐degradable hyperbranched polyglycerols using a disulfide containing monomer, 2‐((2‐(oxiran‐2‐ylmethoxy)ethyl)disulfanyl) ethan‐1‐ol (SSG), to yield PSSG homopolymers and hyperbranched block copolymers, P(G‐b‐SSG) and P(SSG‐b‐G), containing nondegradable glycerol (G) monomers. Using these polymers, we have explored the structures of the hyperbranched block copolymers and their related degradation products. Furthermore, side reaction such as reduction of disulfide bond during the polymerization was investigated by employing the free thiol titration experiments. We elucidated the structures of the degradation products with respect to the architecture of the hyperbranched block copolymer under redox conditions using 1H NMR and GPC measurements. For example, the degradation products of P(G‐b‐SSG) and P(SSG‐b‐G) are clearly different, demonstrating the clear distinction between linear and hyperbranched block copolymers. We anticipate that this study will extend the structural diversity of PG based polymers and aid the understanding of the structures of degradable hyperbranched PG systems. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1752–1761  相似文献   

12.
Biodegradable shape memory polymers are promising biomaterials for minimally invasive surgical procedures. Herein, a series of linear biodegradable shape memory poly(ε‐caprolactone) (PCL)‐based polyurethane ureas (PUUs) containing a novel phenylalanine‐derived chain extender is synthesized. The phenylalanine‐derived chain extender, phenylalanine‐hexamethylenediamine‐phenylalanine (PHP), contains two chymotrypsin cleaving sites to enhance the enzymatic degradation of PUUs. The degradation rate, the crystallinity, and mechanical properties of PUUs are tailored by the content of PHP. Meanwhile, semicrystalline PCL is not only hydrolytically degradable but also vital for shape memory. Good shape memory ability under body temperature is achieved for PUUs due to the strong interactions in hard segments for permanent crosslinking and the crystallization‐melt transition of PCL to switch temporary shape. The PUUs would have a great potential in application as implanting stent.  相似文献   

13.
Supramolecular polymers and materials are attracting more and more attention nowadays due to their dynamic properties such as reversibility, stimuli-responsiveness and self-healing. Conventionally, bifunctional or multi-functional monomers are first covalently synthesized, followed by the supramolecular complexation to form supramolecular polymers and materials. Recently, we have proposed the supramonomer concept to construct supramolecular polymers and materials in a different way. Supramonomers are bifunctional or multi-functional monomers fabricated by noncovalent synthesis, but can undergo traditional covalent polymerization. In this highlight article, we will summarize and discuss the fabrication of supramonomer and covalent polymerization methods of supramonomers; fabrication of multi-responsive supramolecular polymers from supramonomers; and fabrication of supramolecular materials from supramonomers. It is highly anticipated that the supramonomer concept will enrich the methodology towards supramolecular polymers and materials. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 604–609  相似文献   

14.
We report herein the implementation of a dynamic covalent chemistry approach to the generation of multivalent clusters for DNA recognition. We show that biomolecular clusters can be expressed in situ by a programmed self‐assembly process using chemoselective ligations. The cationic clusters are shown, by fluorescence displacement assay, gel electrophoresis and isothermal titration calorimetry, to effectively complex DNA through multivalent interactions. The reversibility of the ligation was exploited to demonstrate that template effects occur, whereby DNA imposes component selection in order to favor the most active DNA‐binding clusters. Furthermore, we show that a chemical effector can be used to trigger DNA release through component exchange reactions.  相似文献   

15.
This Highlight presents an overview of the rapidly growing field of dynamic covalent polymers. This class of polymers combines intrinsic reversibility with the robustness of covalent bonds, thus enabling formation of mechanically stable, polymer‐based materials that are responsive to external stimuli. It will be discussed how the inherent dynamic nature of the dynamic covalent bonds on the molecular level can be translated to the macroscopic level of the polymer, giving access to a range of applications, such as stimuli‐responsive or self‐healing materials. A primary distinction will be made based on the type of dynamic covalent bond employed, while a secondary distinction will be based on the consideration whether the dynamic covalent bond is used in the main chain of the polymer or whether it is used to allow side chain modification of the polymer. Emphasis will be on the chemistry of the dynamic covalent bonds present in the polymer, in particular in relation to how the specific (dynamic) features of the bond impart functionality to the polymer material, and to the conditions under which this dynamic behavior is manifested. © 2016 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3551–3577.  相似文献   

16.
Side‐chain liquid‐crystalline polymers (SCLCPs) as nucleating agents for high‐density polyethylene (HDPE) were investigated. For this purpose, the molecular architectures of four different vinyl monomers with liquid‐crystalline properties were designed and prepared with 1‐butanol, 1‐pentanol, 4‐hydroxybenzoic acid, hydroquinone, and acryloyl chloride as the starting materials through alkylation and acylation reactions. The corresponding polymers were synthesized by homopolymerization in 1,4‐dioxane with benzoyl peroxide as the initiator at 60 °C. Both the monomers and the synthesized polymers were characterized with elemental analysis, Fourier transform infrared, and 1H NMR measurements. Differential scanning calorimetry, thermogravimetric analysis, and hot stage polarized optical microscopy were employed to study the phase‐transition temperature, mesophase texture, and thermal stability of the liquid‐crystalline polymers. The results showed that all the polymers had thermotropic liquid‐crystalline features. Being used as nucleating agents, SCLCPs effectively increased both the crystallization temperature and rate and, at the same time, raised the crystallinity for HDPE. In comparison with common small‐molecule nucleating agents, such as 1,3:2,4‐dibenzylidenesorbitol, SCLCPs are more efficient and are indeed excellent nucleating agents for HDPE. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3067–3078, 2005  相似文献   

17.
The introduction of dynamic covalent polymers, in which the monomer units are linked by reversible covalent bonds and can undergo component exchange, opens up new possibilities for the generation of functional materials. Extending this approach to the generation of dynamic biopolymers in aqueous media, which are able to adapt constitution (sequence, length) to external factors (e.g., environment, medium, template), would provide an alternative approach to the de novo design of functional dynamic bio‐macromolecules. As a first step towards this goal, various mono‐ and bifunctionalised (hetero‐ and homotopic) nucleic acid‐derived building blocks of type I – X have been synthesised for the generation of dynamic main‐chain and side‐chain reversible nucleic acid analogues. Hydrazide‐ and/or acetal (protected carbonyl)‐functionalised components were selected, which differ in terms of flexibility, length, net formal charge, and hydrazide/acetal substituents, in order to explore how such factors may affect the properties (structure, solubility, molecular recognition features) of the polymer products that may be generated by polycondensation.  相似文献   

18.
Ionic covalent organic nanosheets (iCONs), a member of the two‐dimensional (2D) nanomaterials family, offer a unique functional platform for a wide range of applications. Herein, we explore the potential of an ethidium bromide (EB)‐based covalent organic framework ( EB‐TFP ) that self‐exfoliates in water resulting in 2D ionic covalent organic nanosheets ( EB‐TFP‐iCONs ) for the selective detection of double‐stranded DNA (dsDNA). In an aqueous medium, the self‐exfoliated EB‐TFP‐iCONs reassemble in the presence of dsDNA resulting in hybrid EB‐TFP‐iCONs‐DNA crystalline nanosheets with enhanced fluorescence at 600 nm. Detailed steady‐state and time‐resolved emission studies revealed that the reassembly phenomenon was highly selective for dsDNA when compared to single‐stranded DNA (ssDNA), which allowed us to use the EB‐TFP‐iCONs as a 2D fluorescent platform for the label‐free detection of complementary DNA strands.  相似文献   

19.
Polymeric nanoparticles are promising delivery platforms for various biomedical applications. One of the main challenges toward the development of therapeutic nanoparticles is the premature disassembly and release of the encapsulated drug. Among the different strategies to enhance the kinetic stability of polymeric nanoparticles, shell‐ and core‐crosslinking have been shown to provide robust character, while creating a suitable environment for encapsulation of a wide range of therapeutics, including hydrophilic, hydrophobic, metallic, and small and large biomolecules, with gating of their release as well. The versatility of shell‐ and core‐crosslinked nanoparticles is driven from the ease by which the structures of the shell‐ and core‐forming polymers and crosslinkers can be modified. In addition, postmodification with cell‐recognition moieties, grafting of antibiofouling polymers, or chemical degradation of the core to yield nanocages allow the use of these robust nanostructures as “smart” nanocarriers. The building principles of these multifunctional nanoparticles borrow analogy from the synthesis, supramolecular assembly, stabilization, and dynamic activity of the naturally driven biological nanoparticles such as proteins, lipoproteins, and viruses. In this review, the chemistry involved during the buildup from small molecules to polymers to covalently stabilized nanoscopic objects is detailed, with contrast of the strategies of the supramolecular assembly of polymer building blocks followed by intramicellar stabilization into shell‐, core‐, or core–shell‐crosslinked knedel‐like nanoparticles versus polymerization of polymers into nanoscopic molecular brushes followed by further intramolecular covalent stabilization events. The rational design of shell‐crosslinked knedel‐like nanoparticles is then elaborated for therapeutic packaging and delivery, with emphasis on the polymer chemistry aspects to accomplish the synthesis of such nanoparticulate systems. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
The synthesis of multifunctional monomers that can be photopolymerized to form highly crosslinked, surface degrading polymers is reviewed. Typical reaction behavior of multifunctional monomers is discussed, as well as the difficulties associated with photopolymerizing thicker materials and the benefits of temporal control of the photoinitiation process. Characterization of the degradation behavior of these networks indicates a surface erosion mechanism where the rate of degradation is readily controlled to produce materials that degrade on time scales of days to months. To provide insight into the structural evolution during the polymerization of multifunctional monomers, the degradation products, specifically the kinetic chain lengths, have been analyzed using MALDI‐TOF spectroscopy. Additionally, the use of photopolymerizable, degrading polymers for drug delivery is illustrated, and other potential applications of these unique polymers are mentioned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号