首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We report the synthesis of [n]manganoarenophanes (n=1, 2) featuring boron, silicon, germanium, and tin as ansa‐bridging elements. Their preparation was achieved by salt‐elimination reactions of the dilithiated precursor [Mn(η5‐C5H4Li)(η6‐C6H5Li)]?pmdta (pmdta=N,N,N′,N′,N′′‐pentamethyldiethylenetriamine) with corresponding element dichlorides. Besides characterization by multinuclear NMR spectroscopy and elemental analysis, the identity of two single‐atom‐bridged derivatives, [Mn(η5‐C5H4)(η6‐C6H5)SntBu2] and [Mn(η5‐C5H4)(η6‐C6H5)SiPh2], could also be determined by X‐ray structural analysis. We investigated for the first time the reactivity of these ansa‐cyclopentadienyl–benzene manganese compounds. The reaction of the distannyl‐bridged complex [Mn(η5‐C5H4)(η6‐C6H5)Sn2tBu4] with elemental sulfur was shown to proceed through the expected oxidative addition of the Sn?Sn bond to give a triatomic ansa‐bridge. The investigation of the ring‐opening polymerization (ROP) capability of [Mn(η5‐C5H4)(η6‐C6H5)SntBu2] with [Pt(PEt3)3] showed that an unexpected, unselective insertion into the Cipso?Sn bonds of [Mn(η5‐C5H4)(η6‐C6H5)SntBu2] had occurred.  相似文献   

2.
Reaction of 2, 4, 6‐tri‐tert‐butylphenol ( 1 ) with di‐n‐butylmagnesium in the molar ratio 1:1 allows the synthesis of {(nBu)Mg(μ‐OR)2Mg(nBu)} ( 2 ) (R = 2, 4, 6‐tBu3C6H2), which reacts with excess 1 to give the homoleptic alcoholate complex {(RO)Mg(μ‐OR)2Mg(OR)} ( 3 ) (R = 2, 4, 6‐tBu3C6H2). The structures of 2 and 3 were determined by X‐ray crystallography.  相似文献   

3.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XVII [1] [Co(g5‐Me5C5)(g3tBu2PPCH–CH3)] from [Co(g5‐Me5C5)(g2‐C2H4)2] and tBu2P–P=P(Me)tBu2 [Co(η5‐Me5C5)(η3tBu2PPCH–CH3)] 1 is formed in the reaction of [Co(η5‐Me5C5)(η2‐C2H4)2] 2 with tBu2P–P 4 (generated from tBu2P–P=P(Me)tBu2 3 ) by elimination of one C2H4 ligand and coupling of the phosphinophosphinidene with the second one. The structure of 1 is proven by 31P, 13C, 1H NMR spectra and the X‐ray structure analysis. Within the ligand tBu2P1P2C1H–CH3 in 1 , the angle P1–P2–C1 amounts to 90°. The Co, P1, P2, C1 atoms in 1 look like a „butterfly”︁. The reaction of 2 with a mixture of tBu2P–P=P(Me)tBu2 3 and tBu–C?P 5 yields [Co(η5‐Me5C5){η4‐(tBuCP)2}] 6 and 1 . While 6 is spontaneously formed, 1 appears only after complete consumption of 5 .  相似文献   

4.
The reaction of the organolithium derivative {2, 6‐[P(O)(OEt)2]2‐4‐tert‐Bu‐C6H2}Li ( 1 ‐Li) with [Ph3C]+[PF6] gave the substituted biphenyl derivative 4‐[(C6H5)2CH]‐4′‐[tert‐Bu]‐2′, 6′‐[P(O)(OEt)2]2‐1, 1′‐biphenyl ( 5 ) which was characterized by 1H, 13C and 31P NMR spectroscopy and single crystal X‐ray analysis. Ab initio MO‐calculations reveal the intramolecular O···C distances in 5 of 2.952(4) and 2.988(5)Å being shorter than the sum of the van der Waals radii of oxygen and carbon to be the result of crystal packing effects. Also reported are the synthesis and structure of the bromine‐substituted derivative {2, 6‐[P(O)(OEt)2]2‐4‐tert‐Bu]C6H2}Br ( 9 ) and the structure of the protonated ligand 5‐tert‐Bu‐1, 3‐[P(O)(OEt)2]2C6H3 ( 1 ‐H). The structures of 1 ‐H, 5 , and 9 are compared with those of related metal‐substituted derivatives.  相似文献   

5.
The reactions of PhCH2SiMe3 ( 1 ), PhCH2SiMe2tBu ( 2 ), PhCH2SiMe2Ph ( 3 ), 3,5‐Me2C6H3CH2SiMe3 ( 4 ), and 3,5‐Me2C6H3CH2SiMe2tBu ( 5 ) with nBuLi in tetramethylethylenediamine (tmeda) afford the corresponding lithium complexes [Li(tmeda)][CHRSiMe2R′] (R, R′ = Ph, Me ( 6 ), Ph, tBu ( 7 ), Ph, Ph ( 8 ), 3,5‐Me2C6H3, Me ( 9 ), and 3,5‐Me2C6H3, tBu ( 10 )), respectively. The new compounds 5 , 7 , 8 , 9 and 10 have been characterized by 1H and 13C NMR spectroscopy, compounds 7 , 8 and 9 also by X‐ray structure analysis.  相似文献   

6.
Syntheses and Crystal Structures of tBu‐substituted Disiloxanes tBu2SiX‐O‐SiYtBu2 (X = Y = OH, Br; X = OH, Y = H) and of the Adducts tBu3SiOH·(HO3SCF3)0.5·H2O and tBu3SiOLi·(LiO3SCF3)2·(H2O)2 The disiloxanes tBu2SiX‐O‐SiYtBu2 (X = Y = H, OH) are accessible from the reaction of CF3SO2Cl with tBu2SiHOH or tBu2Si(OH)2. By this reaction the disiloxane tBu2SiH‐O‐SiHtBu2 is formed together with tBu2SiH‐O‐SiOHtBu2. The disiloxanes tBu2SiX‐O‐SiYtBu2 (X = Y = Cl, Br) can be synthesized almost quantitatively from tBu2SiH‐O‐SiHtBu2 with Cl2 and Br2 in CH2Cl2. The structures of the disiloxanes tBu2SiX‐O‐SiYtBu2 (X = H, Y = OH; X = Y = OH, Br) show almost linear Si‐O‐Si units with short Si‐O bonds. Single crystals of the adducts tBu3SiOH·(HO3SCF3)0.5·H2O and tBu3SiOLi·(LiO3SCF3)2·(H2O)2 have been obtained from the reaction of tBu3SiOH with CF3SO3H and of tBu3SiO3SCF3 with LiOH. According to the result of the X‐ray structural analysis (hexagonal, P‐62c), tBu3SiOLi · (LiO3SCF3)2·(H2O)2 features the ion pair [(tBu3SiOLi)2(LiO3SCF3)3(H2O)3Li]+ [CF3SO3]?. The central framework of the cation forms a trigonal Li6 prism.  相似文献   

7.
The complex [Rh(η3‐benzyl)(dippe)] ( 1 ; dippe=bis(diisopropylphosphino)ethane=(ethane‐1,2‐diyl)bis[diisopropylphosphine]) reacted cleanly with Mes*PH2 ( 2 ; Mes*=2,4,6‐tBu3C6H2) to provide a new Rh species [Rh(H)(dippe)(L)] ( 3 ), L being the 2,3‐dihydro‐3,3‐dimethyl‐1H‐phosphindole ligand 4 (=tBu2C6H2(CMe2CH2PH)) (Scheme 1). Complex 3 was converted to the corresponding chloride [Rh(Cl)(dippe)(L)] ( 6 ) when treated with CH2Cl2, whereas the dimeric species [Rh2{μtBu2C6H2(CMe2CH2P)}(μ‐H)(dippe)2] ( 7 ) was formed upon thermolysis in toluene (Scheme 2). The structures of 6 and 7 ⋅C7H8 were determined by X‐ray crystallography. Complexes 1 and 3 served as catalyst precursors for the dehydrogenative coupling of C−H and P−H bonds in the conversion of 2 to 4 (Scheme 3). Deuteration studies with Mes*PD2 exposed a complex series of bond‐activation pathways that appear to involve C−H activation of the dippe ligand by the Rh‐atom (Schemes 4 and 5)  相似文献   

8.
Triorganoantimony and Triorganobismuth Disulfonates. Crystal and Molecular Structure of (C6H5)3M(O3SC6H5)2(M = Sb, Bi) Triorganoantimony disulfonates R3Sb(O3SR′)2 [R = CH3 = Me, C6H5 = Ph; R′ = Me, CH2CH2OH, Ph, 4-CH3C6H4. R = Ph; R′ = 2,4-(NO2)2C6H3], Me3Sb(O3SCF3)2 · 2 H2O and triphenylbismuth disulfonates Ph3Bi(O3SR′)2 [R = Me, CF3, CH2CH2OH, Ph, 4-CH3C6H4, 2,4-(NO2)2C6H3] have been prepared by reaction of Me3Sb(OH)2, (Ph3SbO)2, and Ph3BiCO3, respectively, with the appropriate sulfonic acids. From vibrational data an ionic structure is inferred for Me3Sb(O3SCF3)2 · 2 H2O and Me3Sb(O3SCH2CH2OH)2, and a covalent structure for the other compounds with a penta-coordinated central atom with trigonal bipyramidal surrounding (Ph or Me in equatorial, unidentate sulfonate ligands in apical positions). Ph3M(O3SPh)2 (M = Sb, Bi) crystallize monoclinic [space group P21/c; M = Sb/Bi: a = 1 611.5(8)/1 557.4(9), b = 987.5(6)/1 072,5(8), c = 1 859.9(9)/1 696.5(9) pm, β = 105.71(5)/96.62(5)°; Z = 4; d(calc.) 1.556/1.781 Mg · m?3; Vcell = 2 849.2 · 106/2 814.8 · 106 pm3; structure determination from 3 438/3 078 independent reflexions (I ≥ 3σ(I)), R(unweighted) = 0.030/0.029]. M is bonding to three Ph groups in the equational plane [mean distances Sb/Bi? C:210.1(4)/219.1(7) pm] and two sulfonate ligands with O in apical positions [distances Sb? O: 210.6(3), 212.8(2); Bi? O: 227.6(5), 228.0(4) pm]. Weak interaction of M with a second O atom of one sulfonate ligand is inferred from a rather short M? O contact distance [Sb? O: 327.4(4), Bi? O: 312.9(5) pm], and from the distortion of equatorial angles [C? Sb? C: 128.4(2), 119.2(2), 112.2(2); C? Bi? C: 135.9(3), 117.8(3), 106.3(3)°]  相似文献   

9.
Treatment of {HNR}2C10H6‐1, 8 [R = SiMe3 ( 1 ), CH2But ( 2 )] with Sn[N(SiMe3)2]2 afforded the cyclic stannylene Sn[{NR}2C10H6‐1, 8] [R = SiMe3 ( 3 ), CH2But ( 4 )]. From 3 and SnCl2 in THF and crystallisation from toluene, the product was the crystalline tetracyclic compound ( 5 ) as the (toluene)0.5‐solvate. Reaction of 4 with the silylene Si[(NCH2But)2C6H4‐1, 2] ( 6 ) [abbreviated as Si(NN)] in benzene and crystallisation in presence of Et2O furnished the crystalline tricyclic complex Sn[{Si(NCH2But)2C6H4‐1′, 2′}2‐{(NCH2But)2C10H6‐1, 8}] ( 7 ) as the Et2O‐solvate. Complex 5 slowly dissociated into its factors 3 and SnCl2 in toluene, but rapidly in THF. Solutions of 7 in C6D6, C7D8 or THF‐d8, studied by multinuclear, variable temperature NMR spectroscopy, revealed the presence of an equilibrium between 8 (an isomer of 7 , in which the skeletal atoms of the eight‐membered ring were , rather than the of 7 ) and 4 + 2 Si(NN), with 8 dominant in PhMe but not in THF; additionally 8 was shown to be fluxional and solutions of 8 in C6D6 or C7D8 decomposed to give the silane Si(NN)[(NCH2But)2C10H6‐1, 8], 6 and Sn metal. The X‐ray structures of 3 , 5 and 7 are presented.  相似文献   

10.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XXIII. Reactions of tBu2P–P=P(Me)tBu2 with (Et3P)2NiCl2 and [{η2‐C2H4}Ni(PEt3)2] tBu2P–P=P(Me)tBu2 ( 1 ) forms with (Et3P)2NiCl2 ( 2 ) and Na(Nph) the [μ‐(1,3 : 2,3‐η‐tBu2P4tBu2){Ni(PEt3)Cl}2] ( 3 ) as main product. Using Na/Hg instead as reducing agent the Ni0 compounds [{η2tBu2P–P}Ni(PEt3)2] ( 4 ), [{η2tBu2P–P=P–PtBu2}Ni(PEt3)2] ( 5 ) and [(Et3P)Ni(μ‐PtBu2)]2 ( 6 ) with four‐membered Ni2P2 ring result. [{η2‐C2H4}Ni(PEt3)2] yields with 1 also 4 . The compounds were characterized by 1H and 31P{1H} NMR investigations and 3 also by a single crystal X‐ray analysis. It crystallizes triclinic in the space group P 1 with a = 1129.4(2), b = 1256.8(3), c = 1569.5(3) pm, α = 72.44(3)°, β = 70.52(3)° and γ = 74.20(3)°.  相似文献   

11.
The potassium dihydrotriazinide K(LPh,tBu) ( 1 ) was obtained by a metal exchange route from [Li(LPh,tBu)(THF)3] and KOtBu (LPh,tBu = [N{C(Ph)=N}2C(tBu)Ph]). Reaction of 1 with 1 or 0.5 equivalents of SmI2(thf)2 yielded the monosubstituted SmII complex [Sm(LPh,tBu)I(THF)4] ( 2 ) or the disubstituted [Sm(LPh,tBu)2(THF)2] ( 3 ), respectively. Attempted synthesis of a heteroleptic SmII amido‐alkyl complex by the reaction of 2 with KCH2Ph produced compound 3 due to ligand redistribution. The YbII bis(dihydrotriazinide) [Yb(LPh,tBu)2(THF)2] ( 4 ) was isolated from the 1:1 reaction of YbI2(THF)2 and 1 . Molecular structures of the crystalline compounds 2 , 3· 2C6H6 and 4· PhMe were determined by X‐ray crystallography.  相似文献   

12.
The potential energy surfaces of both neutral and dianionic SnC2P2R2 (R=H, tBu) ring systems have been explored at the B3PW91/LANL2DZ (Sn) and 6‐311+G* (other atoms) level. In the neutral isomers the global minimum is a nido structure in which a 1,2‐diphosphocyclobutadiene ring (1,2‐DPCB) is capped by the Sn. Interestingly, the structure established by X‐ray diffraction analysis, for R=tBu, is a 1,3‐DPCB ring capped by Sn and it is 2.4 kcal mol?1 higher in energy than the 1,2‐DPCB ring isomer. This is possibly related to the kinetic stability of the 1,3‐DPCB ring, which might originate from the synthetic precursor ZrCp2tBu2C2P2. In the case of the dianionic isomers we observe only a 6π‐electron aromatic structure as the global minimum, similarly to the cases of our previously reported results with other types of heterodiphospholes. 1 , 4 , 19 The existence of large numbers of cluster‐type isomers in neutral and 6π‐planar structures in the dianions SnC2P2R22? (R=H, tBu) is due to 3D aromaticity in neutral clusters and to 2D π aromaticity of the dianionic rings. Relative energies of positional isomers mainly depend on: 1) the valency and coordination number of the Sn centre, 2) individual bond strengths, and 3) the steric effect of tBu groups. A comparison of neutral stannadiphospholes with other structurally related C5H5+ analogues indicates that Sn might be a better isolobal analogue to P+ than to BH or CH+. The variation in global minima in these C5H5+ analogues is due to characteristic features such as 1) the different valencies of C, B, P and Sn, 2) the electron deficiency of B, 3) weaker pπ–pπ bonding by P and Sn atoms, and 4) the tendency of electropositive elements to donate electrons to nido clusters. Unlike the C5H5+ systems, all C5H5? analogues have 6π‐planar aromatic structures as global minima. The differences in the relative ordering of the positional isomers and ligating properties are significant and depend on 1) the nature of the π orbitals involved, and 2) effective overlap of orbitals.  相似文献   

13.
The Cerium(IV) complexes [{N[CH2CH2N=CH(2‐O‐3,5‐tBu2C6H2)]3}CeCl] ( 1 ) and [{N[CH2CH2N=CH(2‐O‐3,5‐tBu2C6H2)]3}Ce(NO3)] ( 2 ) were derived from the condensation of tris(2‐aminoethyl)amine and 3,5‐di‐tert‐butylsalicylaldehyde and the appropriate Ce starting material CeCl3(H2O)6 and (NH4)2[Ce(NO3)6], respectively. Single crystal X‐ray diffraction studies reveal monomeric complexes.  相似文献   

14.
tBu2P‐P=P(Me)tBu2 reacts with [Fe2(CO)9] to give [μ‐(1, 2, 3:4‐η‐tBu2P1‐P2‐P3‐P4tBu2){Fe(CO)3}{Fe(CO)4}] ( 1 ) and [trans‐(tBu2MeP)2Fe(CO)3]( 2 ). With [(η2‐C8H14)2Fe(CO)3] in addition to [μ‐(1, 2, 3:4‐η‐tBu2P1‐P2‐P3‐P4tBu2){Fe(CO)2PMetBu2}‐{Fe(CO)4}] ( 10 ) and 2 also [(μ‐PtBu2){μ‐P‐Fe(CO)3‐PMetBu2}‐{Fe(CO)3}2(Fe‐Fe)]( 9 ) is formed. 1 crystallizes in the monoclinic space group P21/c with a = 875.0(2), b = 1073.2(2), c = 3162.6(6) pm and β = 94.64(3)?. 2 crystallizes in the monoclinic space group P21/c with a = 1643.4(7), b = 1240.29(6), c = 2667.0(5) pm and β = 97.42(2)?. 9 crystallizes in the monoclinic space group P21/n with a = 1407.5(5), b = 1649.7(5), c = 1557.9(16) pm and β = 112.87(2)?.  相似文献   

15.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes XXI The Influence of the PR3 Ligands on Formation and Properties of the Phosphinophosphinidene Complexes [{η2tBu2P–P}Pt(PR3)2] and [{η2tBu2P1–P2}Pt(P3R3)(P4R′3)] (R3P)2PtCl2 and C2H4 yield the compounds [{η2‐C2H4}Pt(PR3)2] (PR3 = PMe3, PEt3, PPhEt2, PPh2Et, PPh2Me, PPh2iPr, PPh2tBu and P(p‐Tol)3); which react with tBu2P–P=PMetBu2 to give the phosphinophosphinidene complexes [{η2tBu2P–P}Pt(PMe3)2], [{η2tBu2P–P}Pt(PEt3)2], [{η2tBu2P–P}Pt(PPhEt2)2], [{η2tBu2P–P}Pt(PPh2Et)2], [{η2tBu2P–P}Pt(PPh2Me)2], [{η2tBu2P–P}Pt(PPh2iPr], [{η2tBu2P–P}Pt(PPh2tBu)2] and [{η2tBu2P–P}Pt(P(p‐Tol)3)2]. [{η2tBu2P–P}Pt(PPh3)2] reacts with PMe3 and PEt3 as well as with tBu2PMe, PiPr3 and P(c‐Hex)3 by substituting one PPh3 ligand to give [{η2tBu2P1–P2}Pt(P3Me3)(P4Ph3)], [{η2tBu2P1–P2}Pt(P3Ph3)(P4Me3)], [{η2tBu2P1–P2}Pt(P3Et3)(P4Ph3)], [{η2tBu2P1–P2}Pt(P3MetBu2)(P4Ph3)], [{η2tBu2P1–P2}Pt(P3iPr3)(P4Ph3)] and [{η2tBu2P1–P2}Pt(P3(c‐Hex)3)(P4Ph3)]. With tBu2PMe, [{η2tBu2P–P}Pt(P(p‐Tol)3)2] forms [{η2tBu2P1–P2}Pt(P3MetBu2)(P4(p‐Tol)3)]. The NMR data of the compounds are given and discussed with respect to the influence of the PR3 ligands.  相似文献   

16.
Reactions of aquapentachloroplatinic acid, (H3O)[PtCl5(H2O)]·2(18C6)·6H2O ( 1 ) (18C6 = 18‐crown‐6), and H2[PtCl6]·6H2O ( 2 ) with heterocyclic N, N donors (2, 2′‐bipyridine, bpy; 4, 4′‐di‐tert‐butyl‐2, 2′‐bipyridine, tBu2bpy; 1, 10‐phenanthroline, phen; 4, 7‐diphenyl‐1, 10‐phenanthroline, Ph2phen; 2, 2′‐bipyrimidine, bpym) afforded with ligand substitution platinum(IV) complexes [PtCl4(N∩N)] (N∩N = bpy, 3a ; tBu2bpy, 3b ; Ph2phen, 5 ; bpym, 7 ) and/or with protonation of N, N donor yielding (R2phenH)2[PtCl6] (R = H, 4a ; Ph, 4b ) and (bpymH)+ ( 8 ). With UV irradiation Ph2phen and bpym reacted with reduction yielding platinum(II) complexes [PtCl2(N∩N)] (N∩N = Ph2phen, 6 ; bpym, 9 ). Identities of all complexes were established by microanalysis as well as by NMR (1H, 13C, 195Pt) and IR spectroscopic investigations. Molecular structures of [PtCl4(bpym)]·MeOH ( 7 ) and [PtCl2(Ph2phen)] ( 6 ) were determined by X‐ray diffraction analyses. Differences in reactivity of bpy/bpym and phen ligands are discussed in terms of calculated structures of complexes [PtCl5(N∩N)] with monodentately bound N, N ligands (N∩N = bpy, 10a ; phen, 10b ; bpym, 10c ).  相似文献   

17.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XX Formation and Structure of [{η2tBu2P–P}Pt(PHtBu2)(PPh3)] [{η2tBu2P1–P2}Pt(P3Ph3)(P4Ph3)] ( 2 ) reacts with tBu2PH exchanging only the P3Ph3 group to give [{η2tBu2P1–P2}Pt(P3HtBu2)(P4Ph3)] ( 1 ). The crystal stucture determination of 1 together with its 31P{1H} NMR data allow for an unequivocal assignment of the coupling constants in related Pt complexes. 1 crystallizes in the triclinic space group P1 (no. 2) with a = 1030.33(15), b = 1244.46(19), c = 1604.1(3) pm, α = 86.565(17)°, β = 80.344(18)°, γ = 74.729(17)°.  相似文献   

18.
M(H2O)2(4,4′‐bipy)[C6H4(COO)2]·2H2O (M = Mn2+, Co2+) – Two Isotypic Coordination Polymers with Layered Structure Monoclinic single crystals of Mn(H2O)2(4,4′‐bipy)[C6H4(COO)2]·2H2O ( 1 ) and Co(H2O)2(4,4′‐bipy)[C6H4(COO)2]· 2H2O ( 2 ) have been prepared in aqueous solution at 80 °C. Space group P2/n (no. 13), Z = 2; 1 : a = 769.20(10), b = 1158.80(10), c = 1075.00(10) pm, β = 92.67(2)°, V = 0.9572(2) nm3; 2 : a = 761.18(9), b = 1135.69(9), c = 1080.89(9) pm, β = 92.276(7)°, V = 0.9337(2) nm3. M2+ (M = Mn, Co), which is situated on a twofold crystallographic axis, is coordinated in a moderately distorted octahedral fashion by two water molecules, two oxygen atoms of the phthalate anions and two nitrogen atoms of 4,4′‐biypyridine ( 1 : M–O 219.5(2), 220.1(2) pm, M–N 225.3(2), 227.2(2) pm; 2 : Co–O 212.7(2), 213.7(2) pm, Co–N 213.5(3), 214.9(3) pm). M2+ and [C6H4(COO)2)]2? build up chains, which are linked by 4,4′‐biyridine molecules to yield a two‐dimensional coordination polymer with layers parallel to (001).Thermogravimetric analysis in air of 1 indicated a loss of water of crystallization between 154 and 212 °C and in 2 between 169 and 222 °C.  相似文献   

19.
The synthesis and full characterization of the sterically demanding ditopic lithium bis(pyrazol‐1‐yl)borates Li2[p‐C6H4(B(Ph)pzR2)2] is reported (pzR = 3‐phenylpyrazol‐1‐yl ( 3 Ph), 3‐t‐butylpyrazol‐1‐yl ( 3 tBu)). Compound 3 Ph crystallizes from THF as THF‐adduct 3 Ph(THF)4 which features a straight conformation with a long Li···Li distance of 12.68(1) Å. Compound 3 tBu was found to function as efficient and selective scavenger of chloride ions. In the presence of LiCl it forms anionic complexes [ 3 tBuCl] with a central Li‐Cl‐Li core (Li···Li = 3.75(1) Å).  相似文献   

20.
Heterobinuclear Complexes: Synthesis and X‐ray Crystal Structures of [RuRh(μ‐CO)(CO)4(μ‐PtBu2)(tBu2PH)], [RuRh(μ‐CO)(CO)3(μ‐PtBu2)(μ‐Ph2PCH2PPh2)], and [CoRh(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)] [Ru3Rh(CO)73‐H)(μ‐PtBu2)2(tBu2PH)(μ‐Cl)2] ( 2 ) yields by cluster degradation under CO pressure as main product the heterobinuclear complex [RuRh(μ‐CO)(CO)4(μ‐PtBu2)(tBu2PH)] ( 4 ). The compound crystallizes in the orthorhombic space group Pcab with a = 15.6802(15), b = 28.953(3), c = 11.8419(19) Å and V = 5376.2(11) Å3. The reaction of 4 with dppm (Ph2PCH2PPh2) in THF at room temperature affords in good yields [RuRh(μ‐CO)(CO)3(μ‐PtBu2)(μ‐dppm)] ( 7 ). 7 crystallizes in the triclinic space group P 1 with a = 9.7503(19), b = 13.399(3), c = 15.823(3) Å and V = 1854.6 Å3. Moreover single crystals of [CoRh(CO)4(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 9 ) could be obtained and the single‐crystal X‐ray structure analysis revealed that 9 crystallizes in the monoclinic space group P21/a with a = 11.611(2), b = 13.333(2), c = 18.186(3) Å and V = 2693.0(8) Å3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号