首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Owing to a stable and porous cage structure, natural gas hydrates can store abundant methane and serve as a potentially natural gas resource. However, the microscopic mechanism of how hydrate crystalline grows has not been fully explored, especially for the structure containing different guest molecules. Hence, we adopt density functional theory (DFT) to investigate the fusion process of structure I hydrates with CH4/C2H6 guest molecules from mono-cages to triple-cages. We find that the volume of guest molecules affects the stabilities of large (51262, L) and small (512, s) cages, which are prone to capture C2H6 and CH4, respectively. Mixed double cages (small cage and large cage) with the mixed guest molecules have the highest stability and fusion energy. The triangular triple cages exhibit superior stability because of the three shared faces, and the triangular mixed triple cages (large-small-large) structure with the mixed guest molecules shows the highest stability and fusion energy in the triple-cage fusion process. These results can provide theoretical insights into the growth mechanism of hydrates with other mono/mixed guest molecules for further development and application of these substances.  相似文献   

3.
We investigated for the first time the abnormal thermal expansion induced by an asymmetric guest structure using high‐resolution neutron powder diffraction. Three dihydrogen molecules (H2, D2, and HD) were tested to explore the guest dynamics and thermal behavior of hydrogen‐doped clathrate hydrates. We confirmed the restricted spatial distribution and doughnut‐like motion of the HD guest in the center of anisotropic sII‐S (sII‐S=small cages of structure II hydrates). However, we failed to observe a mass‐dependent relationship when comparing D2 with HD. The use of asymmetric guest molecules can significantly contribute to tuning the cage dimension and thus can improve the stable inclusion of small gaseous molecules in confined cages.  相似文献   

4.
To provide improved understanding of guest–host interactions in clathrate hydrates, we present some correlations between guest chemical structures and observations on the corresponding hydrate properties. From these correlations it is clear that directional interactions such as hydrogen bonding between guest and host are likely, although these have been ignored to greater or lesser degrees because there has been no direct structural evidence for such interactions. For the first time, single‐crystal X‐ray crystallography has been used to detect guest–host hydrogen bonding in structure II (sII) and structure H (sH) clathrate hydrates. The clathrates studied are the tert‐butylamine (tBA) sII clathrate with H2S/Xe help gases and the pinacolone + H2S binary sH clathrate. X‐ray structural analysis shows that the tBA nitrogen atom lies at a distance of 2.64 Å from the closest clathrate hydrate water oxygen atom, whereas the pinacolone oxygen atom is determined to lie at a distance of 2.96 Å from the closest water oxygen atom. These distances are compatible with guest–water hydrogen bonding. Results of molecular dynamics simulations on these systems are consistent with the X‐ray crystallographic observations. The tBA guest shows long‐lived guest–host hydrogen bonding with the nitrogen atom tethered to a water HO group that rotates towards the cage center to face the guest nitrogen atom. Pinacolone forms thermally activated guest–host hydrogen bonds with the lattice water molecules; these have been studied for temperatures in the range of 100–250 K. Guest–host hydrogen bonding leads to the formation of Bjerrum L‐defects in the clathrate water lattice between two adjacent water molecules, and these are implicated in the stabilities of the hydrate lattices, the water dynamics, and the dielectric properties. The reported stable hydrogen‐bonded guest–host structures also tend to blur the longstanding distinction between true clathrates and semiclathrates.  相似文献   

5.
The first crystal structure is reported for a silicate clathrate hydrate involving a triply charged cation [C18H30N3]3+ and an octameric cubic silicate cage. The structure is essentially a host/guest system, with the silicate cages linked into a framework by hydrogen bonding to water molecules. The space group is P with Z = 2, and the asymmetric unit includes a complete cation and half the anion, plus 21 water molecules (4 of which are in disordered positions). Solid-state (CPMAS) 29Si and 13CNMR spectra are consistent with the diffraction-determined structure and indicate substantial distortion of the anion from cubic symmetry. Solution-state spectra of precursor solutions and of melted material are also presented and discussed.  相似文献   

6.
In this study, we investigate the crystal structures and phase equilibria of butanols+CH4+H2O systems to reveal the hydroxy group positioning and its effects on hydrate stability. Four clathrate hydrates formed by structural butanol isomers are identified with powder X‐ray diffraction (PXRD). In addition, Raman spectroscopy is used to analyze the guest distributions and inclusion behaviors of large alcohol molecules in these hydrate systems. The existence of a free OH indicates that guest molecules can be captured in the large cages of structure II hydrates without any hydrogen‐bonding interactions between the hydroxy group of the guests and the water‐host framework. However, Raman spectra of the binary (1‐butanol+CH4) hydrate do not show the free OH signal, indicating that there could be possible hydrogen‐bonding interactions between the guests and hosts. We also measure the four‐phase equilibrium conditions of the butanols+CH4+H2O systems.  相似文献   

7.
The structure I clathrate hydrate of carbon monoxide has been studied using dielectric measurements and13C NMR spectroscopy. Broad, weak dielectric absorption curves with maxima at 2.2–3.8 K yieldE a = 0.14 kJ mol–1 for the average Arrhenius activation energy associated with the reorientation of the low polarity guest. Except for H2S this represents the fastest reorienting polar guest known among the clathrate hydrates. The low temperature dielectric absorption curves can best be fitted with a Cole-Davidson asymmetric distribution of relaxation times and activation energies (with = 0.06 at 4 × 106 Hz), which at 107 Hz has been resolved into a double symmetric distribution of discrete relaxation times for CO in the small and large cages. The cross-polarization magic angle spinning13C NMR spectra indicate identical chemical shifts for CO in the small and large cages, in contrast to other hydrates. The static spectra show that the CO molecules undergo anisotropic reorientation in the large cages and that there is still considerable mobility at 77 K. One possible model for the anisotropic motion has the CO rapidly moving among sites over each of the 14 faces of the cage with the CO axis orientated towards the cage centre. The cage occupancy ratio at 220 K, s/ L = 1.11, indicates slightly greater preference of CO for the small cage.Dedicated to Dr D. W. Davidson in honor of his great contributions to the sciences of inclusion phenomena.  相似文献   

8.
Efficient separation of n‐butene (n‐C4H8) and iso‐butene (iso‐C4H8) is of significance for the upgrading of C4 olefins to high‐value end products but remains one of the major challenges in hydrocarbon purifications owing to their similar structures. Herein, we report a flexible metal‐organic framework, MnINA (INA=isonicotinate), featuring one‐dimensional pore channels with periodically large pocket‐like cavities connected by narrow bottlenecks, for the first time for efficient n‐/iso‐C4H8 separation. MnINA with smaller pore size (4.62 Å) compared with CuINA (4.84 Å), exhibits steep adsorption isotherms and high capacity of 1.79 mmol g?1 for n‐C4H8 (4.46 Å) through strong host‐guest interactions via C?H???π bonding. The narrow bottlenecks exert barriers for the large molecules of iso‐C4H8 (4.84 Å) within the gate‐opening pressure range of 0–0.1 bar. This gives rise to MnINA with excellent separation selectivity of 327.7 for n‐/iso‐C4H8 mixture. The adsorption mechanism for n‐C4H8 and the gate‐opening effect were investigated by dispersion‐corrected density functional (DFT‐D) theory, verifying the strong interactions between n‐C4H8 and the frameworks as well as the gate‐opening effect derived from the rotation of organic linkers. The breakthrough tests confirmed MnINA and CuINA can be promising candidates for n‐/iso‐C4H8 separation.  相似文献   

9.
Heat capacities of structure I and II trimethylene oxide (TMO) clathrate hydrates doped with small amount of potassium hydroxide (x=1.8×10–4 to water) were measured by an adiabatic calorimeter in the temperature range 11–300 K. In the str. I hydrate (TMO·7.67H2O), a glass transition and a higher order phase transition were observed at 60 K and 107.9 K, respectively. The glass transition was considered to be due to the freezing of the reorientation of the host water molecules, which occurred around 85 K in the pure sample and was lowered owing to the acceleration effect of KOH. The relaxation time of the water reorientation and its distribution were estimated and compared with those of other clathrate hydrates. The phase transition was due to the orientational ordering of the guest TMO molecules accommodated in the cages formed by water molecules. The transition was of the higher order and the transition entropy was 1.88 J·K–1(TMO-mol)–1, which indicated that at least 75% of orientational disorder was remaining in the low temperature phase. In the str. II hydrates (TMO·17H2O), only one first-order phase transition appeared at 34.5 K. This transition was considered to be related to the orientational ordering of the water molecules as in the case of the KOH-doped acetone and tetrahydrofuran (THF) hydrates. The transition entropy was 2.36 JK–1(H2O-mol)–1, which is similar to those observed in the acetone and THF hydrates. The relations of the transition temperature and entropy to the guest properties (size and dipole moment) were discussed.Contribution No 57 from the Microcalorimetry Research CenterThe authors would like to express their sincere thanks to the Nissan Science Foundation for their financial support.  相似文献   

10.
Molecular dynamics (MD) simulations of structure II clathrate hydrates are performed under canonical (NVT) and isobaric–isothermal (NPT) ensembles. The guest molecule as a small help gas is xenon and gases such as cyclopropane, isobutane and propane are used as large hydrocarbon guest molecule (LHGM). The dynamics of structure II clathrate hydrate is considered in two cases: empty small cages and small cages containing xenon. Therefore, the MD results for structure II clathrate hydrates of LHGM and LHGM + Xe are obtained to clarify the effects of guest molecules on host lattice structure. To understand the characteristic configurations of structure II clathrate hydrate the radial distribution functions (RDFs) are calculated for the studied hydrate system. The obtained results indicate the significance of interactions of the guest molecules on stabilizing the hydrate host lattice and these results is consistent with most previous experimental and theoretical investigations.  相似文献   

11.
The crystal structure and phase transition of cubic structure II (sII) binary clathrate hydrates of methane (CH4) and propanol are reported from powder X‐ray diffraction measurements. The deformation of host water cages at the cubic–tetragonal phase transition of 2‐propanol+CH4 hydrate, but not 1‐propanol+CH4 hydrate, was observed below about 110 K. It is shown that the deformation of the host water cages of 2‐propanol+CH4 hydrate can be explained by the restriction of the motion of 2‐propanol within the 51264 host water cages. This result provides a low‐temperature structure due to a temperature‐induced symmetry‐lowering transition of clathrate hydrate. This is the first example of a cubic structure of the common clathrate hydrate families at a fixed composition.  相似文献   

12.
Nonspherical cages in inclusion compounds can result in non‐uniform motion of guest species in these cages and anisotropic lineshapes in NMR spectra of the guest. Herein, we develop a methodology to calculate lineshape anisotropy of guest species in cages based on molecular dynamics simulations of the inclusion compound. The methodology is valid for guest atoms with spin 1/2 nuclei and does not depend on the temperature and type of inclusion compound or guest species studied. As an example, the nonspherical shape of the structure I (sI) clathrate hydrate large cages leads to preferential alignment of linear CO2 molecules in directions parallel to the two hexagonal faces of the cages. The angular distribution of the CO2 guests in terms of a polar angle θ and azimuth angle ? and small amplitude vibrational motions in the large cage are characterized by molecular dynamics simulations at different temperatures in the stability range of the CO2 sI clathrate. The experimental 13C NMR lineshapes of CO2 guests in the large cages show a reversal of the skew between the low temperature (77 K) and the high temperature (238 K) limits of the stability of the clathrate. We determine the angular distributions of the guests in the cages by classical MD simulations of the sI clathrate and calculate the 13C NMR lineshapes over a range of temperatures. Good agreement between experimental lineshapes and calculated lineshapes is obtained. No assumptions regarding the nature of the guest motions in the cages are required.  相似文献   

13.
At relatively high temperatures (200–270K), clathrate hydrate cages achieve their full crystallographic symmetry because of time averaging of different cage configurations which exist because of disorder in the water molecule orientations. The average orientation of guest molecules in the cages can be obtained from the NMR spectrum, in case of spin 1/2 nuclei from the nuclear shielding tensor, in case of spin 1 nuclei from the quadrupole coupling tensor. Guest molecules studied include carbon dioxide, carbonyl sulphide, methyl-d3 fluoride, methyl-d3 chloride, methyl-d3 bromide, ethane-d6, acetylene-d2 in the structure I hydrates, and methyl-d3 iodide in the structure II hydrate.For the slightly flattened large cage of structure I hydrate, the guest molecules rotate so that the plane which contains the long axis of the molecule is confined to be nearer to the equatorial plane of the cage than the axial regions.Since the structure II large cage has tetrahedral symmetry on time average, it exerts no orienting effect on guest molecules.NRCC no. 32722.  相似文献   

14.
Presented here is a new interrupted AST‐type zeolitic imidazolate framework, Zn5(OH)(dmbim)9(H2O)? 4(DMF) ( 1 ) with cub and interrupted ast cages, which exhibits permanent porosity, high hydrophobicity and strong solid‐state photoluminescent properties. More importantly, structural ordered DMF molecules are firmly confined in the ‐ast cage by strong host‐guest interactions.  相似文献   

15.
Polymorphism is the ability of a solid material to exist in more than one form or crystal structure and this is of interest in the fields of crystal engineering and solid‐state chemistry. 2,2′‐(Disulfanediyl)dibenzoic acid (also called 2,2′‐dithiosalicylic acid, DTSA) is able to form different hydrogen bonds using its carboxyl groups. The central bridging S atoms allow the two terminal arene rings to rotate freely to generate various hydrogen‐bonded linking modes. DTSA can act as a potential host molecule with suitable guest molecules to develop new inclusion compounds. We report here the crystal structures of three new polymorphs of the inclusion compound of DTSA and trimethylamine, namely trimethylazanium 2‐[(2‐carboxyphenyl)disulfanyl]benzoate 2,2′‐(disulfanediyl)dibenzoic acid monosolvate, C3H10N+·C14H9O4S2·C14H10O4S2, (1), tetrakis(trimethylazanium) bis{2‐[(2‐carboxyphenyl)disulfanyl]benzoate} 2,2′‐(disulfanediyl)dibenzoate 2,2′‐(disulfanediyl)dibenzoic acid monosolvate, 4C3H10N+·2C14H9O4S2·C14H8O4S22−·C14H10O4S2, (2), and trimethylazanium 2‐[(2‐carboxyphenyl)disulfanyl]benzoate, C3H10N+·C14H9O4S2, (3). In the three polymorphs, DTSA utilizes its carboxyl groups to form conventional O—H…O hydrogen bonds to generate different host lattices. The central N atoms of the guest amine molecules accept H atoms from DTSA molecules to give the corresponding cations, which act as counter‐ions to produce the stable crystal structures via N—H…O hydrogen bonding between the host acid and the guest molecule. It is noticeable that although these three compounds are composed of the same components, the final crystal structures are totally different due to the various configurations of the host acid, the number of guest molecules and the inducer (i.e. ancillary experimental acid).  相似文献   

16.
We suggest two types of new amine-type sII formers: pyrrolidine and piperidine. These guest compounds fail to form clathrate hydrate structures with host water, but instead have to combine with light gaseous guest molecules (methane) for enclathration. First, two binary clathrate hydrates of (pyrrolidine + methane) and (piperidine + methane) were synthesized at various amine concentrations. 13C NMR and Raman analysis were done to identify the clathrate hydrate structure and guest distribution over sII-S and sII-L cages. XRD was also used to find the exact structure and corresponding cell parameters. At a dilute pyrrolidine concentration of less than 5.56 mol%, the tuning phenomenon is observed such that methane molecules surprisingly occupy sII-L cages. At the critical guest concentration of about 0.1 mol%, the cage occupancy ratio reaches the maximum of approximately 0.5. At very dilute guest concentration below 0.1 mol%, the methane molecules fail to occupy large cages on account of their rarefied distribution in the network. Direct-release experiments were performed to determine the actual guest compositions in the clathrate hydrate phases. Finally, we measured the clathrate hydrate phase equilibria of (pyrrolidine + methane) and (piperidine + methane).  相似文献   

17.
The design and synthesis of mixed‐metal coordination cages, which can act as hosts to encapsule guest molecules, is a subject of intensive research, and the utilization of metalloligand is an effective method to construct a designed heterometallic architecture. Herein, a series of heterometallic cages with half‐sandwich Rh, Ir and Ru fragments using CuII‐metalloligand as a building block by a stepwise approach is reported. The cavity sizes of the cages could be controlled easily by the lengths of the organic ligands. Because the metalloligands in the oxalate‐based cage are somewhat distorted and concave, there are weak Cu???O interactions in the molecules, forming a binuclear copper unit. By increasing the height of the cages using longer ligands, 2,5‐dichloro‐3,6‐dihydroxy‐1,4‐benzoquinone (H2CA), the organometallic boxes display interesting host–guest behavior, which are made large enough to accommodate some large molecules, such as pyrene and [Pt(acac)2]. Interestingly, the heterometallic cage with larger cavity size can transfer into a homometallic hexanuclear prism in the presence of pyrazine.  相似文献   

18.
The crystal structure of cholic acid–pentan‐3‐one (1/1), C5H10O·C24H40O5, has been determined in order to deduce the molecular conformation of the small volatile ketone. Data were collected at 100 K to a resolution of (sin θ)/λ = 0.91 Å−1. The structure contains a hydrogen‐bonded cholic acid host network, forming only van der Waals interactions with the guest pentan‐3‐one molecules. The ketone molecules are disordered on general positions, with two clearly identifiable conformations. The majority conformer exhibits approximate C2 symmetry and is similar to that recently observed by microwave spectroscopy in the gas phase.  相似文献   

19.
The minimal occupancy level (θmin) of the clathrate lattice of gas molecules is defined as the number of guest molecules in the host clathrate lattice, which can stabilize the thermodynamically unstable empty cage by covering the energy demand of the transformation of hexagonal ice into empty clathrate lattice (ΔHtrans). The θmin values for chlorine hydrate were determined from the n = f(p)T=const. relationship and the average molar intercalation heat of chlorine in the type I clathrate lattice was also calculated for both type of cavities.  相似文献   

20.
We have previously reported that the trimeric Zn2+–cyclen complex (tris(Zn2+–cyclen), [Zn3L1]6+) and the trianion of trithiocyanuric acid (TCA3−) assembled in a 4:4 ratio to form a cuboctahedral supramolecular cage, [(Zn3L1)4(TCA3−)4]12+ (hereafter referred to as a Zn–cage), in neutral aqueous solution (cyclen=1,4,7,10-tetraazacyclododecane). Herein, we examined the molecular recognition of C1–C12 hydrocarbons (CnH(2n+2) (n≈1–12)), cyclopentane, cyclododecane, cis-decalin, and trans-decalin by the Zn–cage under normal atmospheric pressure. This cage complex was also able to encapsulate guest molecules that had larger volumes than that of the inner cavity of the Zn–cage, thereby suggesting that the inner shape of the Zn–cage was flexible. Computational simulations of Zn–cage–guest complexes provided support for this conclusion. Moreover, the solvent-accessible surface areas (SASA) of the Zn–cage host, guest molecules, and the Zn–cage-guest complexes were calculated and the data were used to explain the order of stability determined by the guest-replacement experiments. The storage of volatile molecules in aqueous solution by the Zn–cage is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号