首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The diarylprolinol‐mediated asymmetric direct cross‐aldol reaction of α,β‐unsaturated aldehyde as an electrophilic aldehyde was developed. The reaction becomes accelerated by an acid when a carbonyl group is introduced at the γ‐position of the α,β‐unsaturated aldehyde. Synthetically useful γ,δ‐unsaturated β‐hydroxy aldehydes were obtained with high anti‐selectivity and excellent enantioselectivity.  相似文献   

2.
The trans‐o‐hydroxybenzylidene pyruvate aldolase‐catalysed reactions between fluoropyruvate and many (hetero)aromatic aldehydes yield aldol adducts without subsequent dehydration. Treatment of the reaction products with hydrogen peroxide yields the corresponding syn‐configured α‐fluoro β‐hydroxy carboxylic acids which have >98 % ee. The overall chemoenzymatic approach, in which fluoropyruvate serves as a fluoroacetate equivalent, may be exploited in the synthesis of polar building blocks and fragments with potential value in drug discovery.  相似文献   

3.
An additive‐free nickel‐catalyzed α‐allylation of aldehydes with allyl alcohol is reported. The reaction is promoted by 1 mol % of in situ formed nickel complex in methanol, and water is the sole by‐product of the reaction. The experimental conditions allow the conversion of various α‐branched aldehydes and α,β‐unsaturated aldehydes as nucleophiles. The same catalyst and reaction conditions enabled a tandem aldol condensation of aldehyde/α‐allylation reaction.  相似文献   

4.
A general and highly chemo‐, regio‐, and stereoselective synthesis of α,β‐unsaturated aldehydes by a domino hydroformylation/aldol condensation reaction has been developed. A variety of olefins and aromatic aldehydes were efficiently converted into various substituted α,β‐unsaturated aldehydes in good to excellent yields in the presence of a rhodium phosphine/acid–base catalyst system. In view of the easy availability of the substrates, the high atom‐efficiency, the excellent selectivity, and the mild conditions, this method is expected to complement current methodologies for the preparation of α,β‐unsaturated aldehydes.  相似文献   

5.
This work describes zinc(II)‐catalyzed hydrative aldol reactions of 2‐en‐1‐ynamides with aldehydes and water to afford branched aldol products regio‐ and stereoselectively. The anti and syn selectivity can be modulated by the sizes of sulfonamides to yield E‐ and Z‐configured zinc(II) dienolates selectively. This new reaction leads to enantiopure aldol products by using a cheap chiral sulfonamide. The mechanistic analysis reveals that the sulfonamide amides of the substrates can trap a released proton to generate dual acidic sites to activate a carbonyl allylation reaction.  相似文献   

6.
Efficient ruthenium‐, rhodium‐, palladium‐, copper‐ and iridium‐catalysed methodologies have been recently developed for the synthesis of quinolines by the reaction of 2‐aminobenzyl alcohols with carbonyl compounds (aldehydes and ketones) or the related alcohols. The reaction is assumed to proceed via a sequence involving initial metal‐catalysed oxidation of 2‐aminobenzyl alcohols to the related 2‐aminobenzaldehydes, followed by cross aldol reaction with a carbonyl compound under basic conditions to afford α,β‐unsaturated carbonyl compounds. These aldehydes or ketones can be also generated in situ via dehydrogenation of the related primary and secondary alcohols. In the final step cyclodehydration of the α,β‐unsaturated carbonyl compound intermediates gives quinolines. Good yields of quinolines were also obtained by reacting 2‐nitrobenzyl alcohols and secondary alcohols in the presence of a ruthenium catalyst. Finally, aniline derivatives afforded also a useful access to quinolines by the reaction with 1,3‐propanediol or 3‐amino‐1‐propanol, or in a three‐component reaction with benzyl alcohol and aliphatic alcohols.  相似文献   

7.
An easily available and efficient chiral N,N′‐dioxide–nickel(II) complex catalyst has been developed for the direct catalytic asymmetric aldol reaction of α‐isothiocyanato imide with aldehydes which produces the products in morderate to high yields (up to 98 %) with excellent diastereo‐ (up to >99:1 d.r.) and enantioselectivities (up to >99 % ee). A variety of aromatic, heteroaromatic, α,β‐unsaturated, and aliphatic aldehydes were found to be suitable substrates in the presence of 2.5 mol % L ‐proline‐derived N,Ndioxide L5 –nickel(II) complex. This process was air‐tolerant and easily manipulated with available reagents. Based on experimental investigations, a possible transition state has been proposed to explain the origin of reactivity and asymmetric inductivity.  相似文献   

8.
A bottom‐up strategy was used for the synthesis of cross‐linked copolymers containing the organocatalyst N‐{(1R)‐2′‐{[(4‐ethylphenyl)sulfonyl]amino}[1,1′‐binaphthalen]‐2‐yl}‐D ‐prolinamide derived from 2 (Scheme 1). The polymer‐bound catalyst 5b containing 1% of divinylbenzene as cross‐linker showed higher catalyst activity in the aldol reaction between cyclohexanone and 4‐nitrobenzaldehyde than 5a and 5c . Remarkably, the reaction in the presence of 5b was carried out under solvent‐free, mild conditions, achieving up to 93% ee (Table 1). The polymer‐bound catalyst 5b was recovered by filtration and re‐used up to seven times without detrimental effects on the achieved diastereo‐ and enantioselectivities (Table 2). The catalytic procedure with polymer 5b was extended to the aldol reaction under solvent‐free conditions of other ketones, including functionalized ones, and different aromatic aldehydes (Table 3). In some cases, the addition of a small amount of H2O was required to give the best results (up to 95% ee). Under these reaction conditions, the cross‐aldol reaction between aldehydes proceeded in moderate yield and diastereo‐ and enantioselectivity (Scheme 2).  相似文献   

9.
A library of π‐expanded α,β‐unsaturated ketones was designed and synthesized. They were prepared by a combination of Wittig reaction, Sonogashira reaction, and aldol condensation. It was further demonstrated that the double aldol condensation can be performed effectively for highly polarized styrene‐ and diphenylacetylene‐derived aldehydes. The strategic placement of two dialkylamino groups at the periphery of D ‐π‐A‐π‐D molecules resulted in dyes with excellent solubility. These ketones absorb light in the region 400–550 nm. Many of them display strong solvatochromism so that the emission ranges from 530–580 nm in toluene to the near‐IR region in benzonitrile. Ketones based on cyclobutanone as central moieties display very high fluorescence quantum yields in nonpolar solvents, which decrease drastically in polar media. Photophysical studies of these new functional dyes revealed that they possess an enhanced two‐photon absorption cross section when compared with simpler ketone derivatives. Due to strong polarization of the resulting dyes, values of two‐photon absorption cross sections on the level of 200–300 GM at 800 nm were achieved, and thanks to that as well as the presence of the keto group, these new two‐photon initiators display excellent performance so that the operating region is 5–75 mW in some cases.  相似文献   

10.
The first enantioselective direct cross‐aldol reaction of α‐keto amides with aldehydes, mediated by a bifunctional ureidopeptide‐based Brønsted base catalyst, is described. The appropriate combination of a tertiary amine base and an aminal, and urea hydrogen‐bond donor groups in the catalyst structure promoted the exclusive generation of the α‐keto amide enolate which reacted with either non‐enolizable or enolizable aldehydes to produce highly enantioenriched polyoxygenated aldol adducts without side‐products resulting from dehydration, α‐keto amide self‐condensation, aldehyde enolization, and isotetronic acid formation.  相似文献   

11.
Hexa‐ and nonanuclear titanium complexes were obtained by self‐assembly of titanium(IV)‐tert‐butoxide and D ‐mandelic acid. Suitable single crystals of these complexes were characterized by X‐ray structure analysis. When used with these complexes, aldol adducts were isolated with a high degree of regioselectivity in direct aldol additions of aromatic and aliphatic aldehydes to functionalized unsymmetrical ketones. High syn‐diastereoselectivities were obtained in aldol additions of enolizable aldehydes with hydroxyacetone and methoxyacetone. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
1,4‐addition reactions of alkylazaarenes catalyzed by strong Brønsted bases have been developed for the first time. The desired reactions with α,β‐unsaturated amides proceeded under mild reaction conditions to give the 1,4‐adducts in high yields. Both ortho‐ and para‐substituted azaarenes afforded the desired adducts in high yields. Regioselective reactions of di‐ or trimethylpyridine were found to be possible depending on the acidity of the α‐hydrogen atoms. Furthermore, a candidate of allosteric protein kinase modulators was synthesized in two steps. An asymmetric variant of this reaction was also found to be feasible.  相似文献   

13.
α‐Oxygen‐functionalized amides found particular utility as enolate surrogates for direct aldol couplings with α‐fluorinated ketones in a catalytic manner. Because of the likely involvement of open transition states, both syn‐ and anti‐aldol adducts can be accessed with high enantioselectivity by judicious choice of the chiral ligands. A broad variety of alkoxy substituents on the amides and aryl and fluoroalkyl groups on the ketone were tolerated, and the corresponding substrates delivered a range of enantioenriched fluorinated 1,2‐dihydroxycarboxylic acid derivatives with divergent diastereoselectivity depending on the ligand used. The amide moiety of the aldol adduct was transformed into a variety of functional groups without protection of the tertiary alcohol, showcasing the synthetic utility of the present asymmetric aldol process.  相似文献   

14.
In the presence of p‐nitrobenzoic acid, the O‐nitroso aldol reaction of nitrosobenzene with enolisable aldehydes may be promoted by commercially available α,α‐diphenylprolinol trimethylsilyl ether. The reaction proceeds with good yields and essentially complete enantioselectivity, with catalyst loadings in the 5–10 mol % range. The resulting α‐oxyaldehyde adducts may be transformed in situ into α‐oxyimines, which provide 1,2‐amino alcohols upon treatment with Grignard reagents, in good overall yield (45–59 %) and with typical diastereomeric ratios ≥95:5.  相似文献   

15.
Chiral 2,3‐allenols were constructed through copper(I)‐catalyzed asymmetric direct alkynylogous aldol reaction. With aromatic and heteroaromatic aldehydes, the alkynylogous aldol reaction with (R)‐DTBM‐SEGPHOS as the ligand proceeded smoothly to furnish the products in excellent regioselectivity with good to high diastereoselectivity and excellent enantioselectivity. In the cases of aliphatic aldehydes, esters of but‐2‐yn‐1‐ol as the substrates and (R,R)‐Ph‐BPE as the ligand were found to be crucial to get good to high regio‐ and diastereoselectivity. The produced chiral 2,3‐allenols are easily transformed into synthetically useful 2‐furanones through cyclization. Finally, the developed method was successfully applied in the rapid synthesis of two chiral intermediates toward the synthesis of two pharmaceutically active compounds that have been proposed for the treatment of neurological disorders.  相似文献   

16.
A novel alkyl functionalization of unactivated alkyl quinolines has been developed combining InCl3 activation with organocatalytic activation of α,β‐unsaturated aldehydes in a synergistic fashion. The reaction proceeds in a highly stereoselective manner as a sequence involving two consecutive synergistic catalytic cycles (Lewis acid‐ and iminium ion‐catalyzed) and requires neither pre‐activated alkyl quinoline substrates with electron‐withdrawing substituents nor highly activated electrophiles. The reaction provides selectively double‐ or mono‐addition products in good yields and high to excellent stereoselectivities. Furthermore, based on spectroscopic and labelling experiments, the mechanisms for the reactions are discussed.  相似文献   

17.
α,α‐Disubstituted α‐amino acids are central to biotechnological and biomedical chemical processes for their own sake and as substructures of biologically active molecules for diverse biomedical applications. Structurally, these compounds contain a quaternary stereocenter, which is particularly challenging for stereoselective synthesis. The pyridoxal‐5′‐phosphate (PLP)‐dependent L ‐serine hydroxymethyltransferase from Streptococcus thermophilus (SHMTSth; EC 2.1.2.1) was engineered to achieve the stereoselective synthesis of a broad structural variety of α,α‐dialkyl‐α‐amino acids. This was accomplished by the formation of quaternary stereocenters through aldol addition of the amino acids D ‐Ala and D ‐Ser to a wide acceptor scope catalyzed by the minimalist SHMTSth Y55T variant overcoming the limitation of the native enzyme for Gly. The SHMTSth Y55T variant tolerates aromatic and aliphatic aldehydes as well as hydroxy‐ and nitrogen‐containing aldehydes as acceptors.  相似文献   

18.
Mechanistic studies of the reaction between 3‐arylprop‐2‐ynyl esters and aldehydes catalyzed by BF3 ? Et2O were performed by isotopic labeling experiments and quantum chemical calculations. The reactions are shown to proceed by either a classical alkyne–carbonyl metathesis route or an unprecedented addition–rearrangement cascade. Depending on the structure of the starting materials and the reaction conditions, the products of these reactions can be Morita–Baylis–Hillman (MBH) adducts that are unavailable by traditional MBH reactions or E‐ and Z‐α,β‐unsaturated ketones. 18O‐Labeling studies suggested the existence of two different reaction pathways to the products. These pathways were further examined by quantum chemical calculations that employed the DFT(wB97XD)/6‐311+G(2d,p) method, together with the conductor‐like screening model for realistic solvation (COSMO‐RS). By using the wB97XD functional, the accuracy of the computed data is estimated to be 1–2 kcal mol?1, shown by the careful benchmarking of various DFT functionals against coupled cluster calculations at the CCSD(T)/aug‐cc‐pVTZ level of theory. Indeed, most of the experimental data were reproduced and explained by theory and it was convincingly shown that the branching point between the two distinct mechanisms is the formation of the first intermediate on the reaction pathway: either the four‐membered oxete or the six‐membered zwitterion. The deep mechanistic understanding of these reactions opens new synthetic avenues to chemically and biologically important α,β‐unsaturated ketones.  相似文献   

19.
14β‐Hydroxysteroids, especially 14β‐hydroxyandrostane derivatives are closely related to the cardenolide skeletons. The latter were readily available through highly diastero/enantioselective Diels–Alder (DA) reactions requiring high pressure or Lewis acid activation. Moreover, in the presence of (R)‐ or (S)‐carvone as a chiral dienophile, the DA‐reaction takes place under chemodivergent parallel kinetic resolution control affording highly enantiomerically enriched 14β‐hydroxysteroid derivatives or the corresponding (ent)‐14β‐hydroxysteroid derivatives.  相似文献   

20.
A novel concept for catalytic asymmetric coupling reactions is presented. Merging organocatalysis with single‐electron oxidation by using a catalytic amount of a copper(II) salt and air as the terminal oxidant, we have developed a highly stereoselective carbon–carbon oxidative coupling reaction of α,β‐unsaturated aldehydes. The concept relies on the generation of a dienamine intermediate, which is oxidized to an open‐shell activated species that undergoes highly selective γ‐homo‐ and γ‐heterocoupling reactions. In the majority of examples presented, only a single stereoisomer was formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号