首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A library of imidazo[1,2‐a]pyridines was synthesized by using the Gevorgyan method and their linear and non‐linear optical properties were studied. Derivatives that contained both electron‐donating and electron‐withdrawing groups at the 2 position were comprehensively investigated. Their emission quantum yield ranged between 0.2–0.7 and it was shown to depend on the substitution pattern, most notably that on the phenyl ring. Electron‐donating substituents improved the luminescence performance of these compounds, whereas electron‐withdrawing substituents led to a more erratic behavior. Substitution on the six‐membered ring had less effect on the fluorescence properties. Extension of the delocalization increased the luminescence quantum yield. A new quadrupolar system was designed that contained two imidazo[1,2‐a]pyridine units on its periphery and a 1,4‐dicyanobenzene unit at its center. This system exhibited a large Stokes‐shifted luminescence that was affected by the polarity and rigidity of the solvent, which was ascribed to emission from an excited state with strong charge‐transfer character. This quadrupolar feature also led to an acceptable two‐photon absorption response in the NIR region.  相似文献   

2.
We report the synthesis of a series of blue‐emitting 2‐phenylbenzoxazoles (PBOs) substituted at either the 5‐ or 6‐position of the benzoxazole ring and the para‐position of the phenyl substituent. The thermal and optical properties of the materials can be rationalized in terms of the position of the substituent at the benzoxazole moiety and the electron‐withdrawing or electron‐donating character of the substituents. From the results, we conclude that the combination of an electron‐donating substituent at the benzoxazole fragment and an electron‐withdrawing one at the phenyl fragment has a more marked effect on the electronic properties of the aromatic PBO core than other possibilities. This particular combination gives luminophores that are suitable for optical applications on the basis of their high emission efficiency and photostability. In view of that, oriented films were prepared by in situ polymerization of a mixture of a liquid crystalline direactive matrix containing 5% (w/w) of the luminophore. The films exhibit linearly polarized emission.  相似文献   

3.
A series of metal‐free organic donor–π bridge–acceptor dyes are studied computationally using density functional theory (DFT) and time‐dependent DFT (TDDFT) approaches to explore their potential performances in dye‐sensitized solar cells (DSSCs). Taking triphenylamine (TPA) and cyanoacrylic acid moieties as donor and acceptor units, respectively, the effects of different substituents of the π linkers in the TPA‐based dyes on the energy conversion efficiency of the DSSCs are theoretically evaluated through optimized geometries, charge distributions, electronic structures, simulated absorption spectra, and free energies of injection. The results show that the molecular orbital energy levels and electron‐injection driving forces of the TPA dyes can be tuned by the introduction of substituents with different electron‐withdrawing or ‐donating abilities. The electron‐withdrawing substituent always lowers the energies of both frontier orbitals, while the electron‐donating one heightens them simultaneously. The efficiency trend of these TPA derivatives as sensitizers in DSSCs is also predicted by analyzing the light‐harvesting efficiencies and the free energies of injection. The following substituents are shown to increase the efficiency of the dye: OMe, OEt, OHe, and OH.  相似文献   

4.
The electronic coupling via the cardo structure in polyfluorene (PFs) was investigated. The series of fluorene units alternatively having alkoxyphenyl as an electron‐donating group (EDG) and/or alkyl benzoate as an electron‐withdrawing group (EWG) at the cardo carbon were synthesized. From the investigation of optical properties of the polymers containing these fluorene units, it was found that the electronic states of the substituents at the cardo carbons and the PF main chains should be less influenced by the introduction of EDG and/or EWG at the cardo structure. Furthermore, these preservation effects in the cardo‐PFs were observed in the film states even after the thermal treatment. We conclude that the electronic structures of the PF main chain are highly preserved from the correlations with the substituents at the cardo carbons. This is the first example, to the best of our knowledge, to survey the systematic information on the electronic structures of the cardo‐PFs and offer the preservation effect of the optical properties from the introduction of EDGs and EWGs at the cardo carbon. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

5.
Although phase‐transfer‐catalyzed asymmetric SNAr reactions provide unique contribution to the catalytic asymmetric α‐arylations of carbonyl compounds to produce biologically active α‐aryl carbonyl compounds, the electrophiles were limited to arenes bearing strong electron‐withdrawing groups, such as a nitro group. To overcome this limitation, we examined the asymmetric SNAr reactions of α‐amino acid derivatives with arene chromium complexes derived from fluoroarenes, including those containing electron‐donating substituents. The arylation was efficiently promoted by binaphthyl‐modified chiral phase‐transfer catalysts to give the corresponding α,α‐disubstituted α‐amino acids containing various aromatic substituents with high enantioselectivities.  相似文献   

6.
A series of ten novel 2‐amino‐4‐oxo‐5‐[(substitutedbenzyl)thio]pyrrolo[2,3‐d]pyrimidines 2‐11 were synthesized as potential inhibitors of thymidylate synthase and as antitumor agents. The analogues contain various electron withdrawing and electron donating substituents on the benzylsulfanyl ring of the side chains and were synthesized from the key intermediate 2‐amino‐4‐oxo‐6‐methylpyrrolo[2,3‐d]pyrimidine, 14 . Appropriately substituted benzyl mercaptans were appended to the 5‐position of 14 via an oxidative addition reaction using iodine, ethanol and water. The compounds were evaluated against human, Escherichia coli and Toxoplasma gondii thymidylate synthase and against human, Escherichia coli and Toxoplasma gondii dihydrofolate reductase. The most potent inhibitor, ( 6 ) which has a 4′‐methoxy substituent on the side chain, has an IC50=25 μM against human thymidylate synthase. Contrary to analogues of general structure 1 , electron donating or electron withdrawing substituents on the side chain of 2‐11 had little or no influence on the human thymidylate synthase inhibitory activity.  相似文献   

7.
The effect of chemical substitutions on the photophysical properties of the salicylidene methylamine molecule (SMA) (J. Jankowska, M. F. Rode, J. Sadlej, A. L. Sobolewski, ChemPhysChem, 2012 , 13, 4287–4294) is studied with the aid of ab initio electronic structure methods. It is shown that combining π‐electron‐donating and π‐electron‐withdrawing substituents results in an electron‐density push‐and‐pull effect on the energetic landscape of the ground and the lowest excited ππ* and nπ* singlet states of the system. The presented search for the most appropriate SMA derivatives with respect to their photoswitching functionality offers an efficient prescreening tool for finding chemical structures before real synthetic realization.  相似文献   

8.
NMR reaction following experiments were used to find optimal conditions for the barbituric acid double addition to aromatic and heteroaromatic carboxaldehydes. It was established that aromatic aldehydes with electron‐donating substituents such as hydroxy, methoxy, and dimethylamino produce only the single addition barbituric acid adduct (barbituric acid benzylidenes). If these electron‐donating substituents are transformed into electron‐withdrawing substituents by virtue of protonation (NMe2 to NHMe2+) then the double barbituric acid adduct becomes the sole product of the reaction. This is also true regardless of the reaction media if strong electron‐withdrawing substituents (such as a nitro group) are present. Considering that the reactive species for nitrogen containing aromatic heterocycles are actually the conjugated acids (electron deficient molecule) only the double barbituric acid adducts are isolated. All synthetic procedures presented are applicable to multi‐gram scale preparations of double barbituric acid adducts.  相似文献   

9.
7‐(o‐Substituted phenyl)‐2,6‐dimethyl‐1,4‐benzoquinone methides which have an electron‐donating methoxy‐(o‐OMe, 2a ) and methyl‐ (o‐Me, 2b ) substituents or an electron‐withdrawing cyano‐ (o‐CN, 2c ) and trifluoromethyl‐ (o‐CF3, 2d ) substituents at the ortho‐position of the aromatic ring and 7‐(m‐substituted phenyl)‐2,6‐dimethyl‐1,4‐benzoquinone methide with an electron‐withdrawing trifluoromethyl‐ (m‐CF3, 2e ) substituent at the meta‐position of the aromatic ring were synthesized, and their asymmetric anionic polymerizations using the complex of lithium 4‐isopropylphenoxide with (?)‐sparteine were carried out in toluene at 0 °C. The polymers with negative optical activity were obtained for all of five monomers, and their specific rotation values largely changed depending upon the substituents of the monomers. On the basis of the comparison of various substituents effects, it was found that the specific rotation of obtained polymers is significantly affected by the electronic effects such as inductive and resonance effects rather than the steric and electrostatic effects of the substituent. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 1048–1058  相似文献   

10.
The chemoselectivity in the reaction of 2‐diazo‐3‐oxo‐3‐phenylpropanal ( 1 ) with aldehydes and ketones in the presence of Et3N was investigated. The results indicate that 1 reacts with aromatic aldehydes with weak electron‐donating substituents and cyclic ketones under formation of 6‐phenyl‐4H‐1,3‐dioxin‐4‐one derivatives. However, it reacts with aromatic aldehydes with electron‐withdrawing substituents to yield 1,3‐diaryl‐3‐hydroxypropan‐1‐ones, accompanied by chalcone derivatives in some cases. It did not react with linear ketones, aliphatic aldehydes, and aromatic aldehydes with strong electron‐donating substituents. A mechanism for the formation of 1,3‐diaryl‐3‐hydroxypropan‐1‐ones and chalcone derivatives is proposed. We also tried to react 1 with other unsaturated compounds, including various olefins and nitriles, and cumulated unsaturated compounds, such as N,N′‐dialkylcarbodiimines, phenyl isocyanate, isothiocyanate, and CS2. Only with N,N′‐dialkylcarbodiimines, the expected cycloaddition took place.  相似文献   

11.
The electrochemical properties of 24 1,4‐dioxidoquinoxalin‐2‐yl ketone derivatives with varying degrees of anti‐Chagas activity were investigated in the aprotic solvent dimethylformamide (DMF) by cyclic voltammetry and first‐derivative cyclic voltammetry. For this group of compounds, the first reduction in DMF was either reversible or quasireversible and consistent with reduction of the N‐oxide functionality to form the radical anion. The second reduction process for these compounds was irreversible under the conditions used. The reduction potentials correlated well with molecular structure. Substitution in the 3‐, 6‐, and 7‐ positions of the quinoxaline ring by electron‐withdrawing substituents directly affected the ease of reduction and improved the biological activities of these compounds, whereas substitution by electron‐donating groups had the opposite effect. The electrochemical results, when combined with previous work on their mechanism of action against Chagas disease and their measured anti‐Chagas activities, indicated that the quinoxaline 1,4‐dioxide system serves as a promising starting point for chemical modifications aimed at improving the T. cruzi activity via a possible bioreduction mechanism.  相似文献   

12.
We have demonstrated that the iridium‐catalyzed direct borylation of hexa‐peri‐hexabenzocoronene (HBC) enables regioselective introduction of boryl groups to the para‐, ortho‐, and meta‐substituted HBCs in high yields. The boryl groups have been transformed into various functionalities such as hydroxy, cyano, ethynyl, and amino groups. We have elucidated that the substituents significantly influence the photophysical properties of HBCs to enhance fluorescence quantum yields. DFT calculations revealed that the origin of the substituent effect is the lift in degeneracy in the frontier orbitals by an interaction with electron‐donating and electron‐withdrawing substituents at the para‐ and ortho‐positions. The change in molecular orbitals results in an increase of the transition probability from the S0→S1 states. In addition, the two‐photon absorption cross‐section values of para‐substituted HBCs are significantly larger than those of ortho‐ and meta‐substituted HBCs.  相似文献   

13.
A novel one‐pot synthesis of 3‐amino‐1,2,4‐triazole developed via iron (III) catalyzed route is reported. The new method is more efficient, simple, and convenient and presents a concise new strategy for the synthesis of 3‐amino‐1,2,4‐triazole derivatives. The iron (III) complex intermediate assisted in the intramolecular bond cyclization owing to its Lewis acidity or oxidizing properties. A series of aromatic nitriles bearing different electron‐donating and electron‐withdrawing groups substituted at para and/or ortho positions were also investigated. The position of the substituents affected the yield of the final compound, with the para‐substituted substrates giving relatively higher yields.  相似文献   

14.
An investigation of intramolecular ring-opening reactions of various cyclopropanated oxabenzonorbornadienes (CPOBDs) with alcohol nucleophiles is reported, which forms two regioisomeric products in good yields. The effect of various tether lengths was explored, wherein increasing the alcohol tether length to 4 or 5 carbons exclusively generated Type 3 products in good yield, while C-1-hydroxymethyl substituted CPOBD formed a 1,3,5-cycloheptatriene derivative in excellent yield. Electron donating arene and electron withdrawing C-5-bridgehead substituents formed Type 3 major products, whereas electron withdrawing arenes and electron donating C-5 substituents preferentially afforded Type 2 compounds. A mechanism is also proposed for the formation of both regioisomeric products.  相似文献   

15.
Theoretical calculations based on the density functional theory (DFT) were performed to understand the effect of substituents on the molecular and electronic structures of technetium nitrido complexes with salen type Schiff base ligands. Optimized structures of these complexes are square pyramidal. The electron density on a Tc atom of the complex with electron withdrawing substituents is lower than that of the complex with electron donating substituents. The HOMO energy is lower in the complex with electron withdrawing substituents than that in the complex with electron donating substituents. The charge on Tc atoms is a good measure that reflects the redox potential of [TcN(L)] complex.  相似文献   

16.
The electronic nature of substituents attached to the 4‐aryl moiety of 1,4‐dihydropyridines strongly affects the photophysical and photochemical behavior of these family of compounds. The presence of an electron donor substituent on the 4‐aryl moiety (or the absence of electron‐withdrawing ones) modifies the luminescence lifetimes (τ < 100 ps) and diminishes the photodecomposition quantum yields. For electron‐withdrawing substituents, the photodegradation quantum yield is affected by the media, changing more than two orders of magnitude as the polarity is increased. Studies in micellar media allow us to conclude that 4‐aryl‐1,4‐dihydropyridines are located near to the interface; however, the surface charge of micelles has no effect on the photodegradation rate constant or the photoproducts profile. The main conclusion of this work is that the photolability of 4‐aryl‐1,4‐dihydropyridines can be significantly reduced by the incorporation of antioxidant moieties.  相似文献   

17.
Two conjugated polymers containing stilbene and fumaronitrile moieties were synthesized to investigate their electronic properties by the existence of electron‐withdrawing cyano groups on a vinylene backbone. The cyclic voltammetry investigation and time‐dependent density functional theory calculations indicated that the cyano substituents lowered the lowest unoccupied molecular orbital (LUMO) energy level by about 0.65 and 0.63 eV, respectively. The lowering of the LUMO energy levels due to the electron‐withdrawing properties of the cyano substituents could enhance electron injection capability. Furthermore, bithiophene‐fumaronitrile (donor‐acceptor) intermolecular interaction facilitates the self‐assembly of the polymer chains. Organic field‐effect transistors (OFETs) based on PBTSB without the electron‐withdrawing group only exhibit hole transport, while OFETs based on PBTFN with cyano substituents exhibit ambipolar characteristics. The growth of PBTFN crystalline fibrils was observed with increasing annealing temperature, which enhanced hole and electron mobility. A complementary‐like inverter using PBTFN with ambipolar properties exhibited good symmetry with an inverting voltage nearly half that of the power supply with a gain of 9 at VDD = 100 V. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

18.
A series of magnesium benzylalkoxide complexes, [LnMg(μ‐OBn)]2 ( 1 – 14 ) supported by NNO‐tridentate pyrazolonate ligands with various electron withdrawing‐donating subsituents have been synthesized and characterized. X‐ray crystal structural studies revealed that Complexes 1 – 3 , 5 , 7 , 9 , and 10 are dinuclear bridging through benzylalkoxy oxygen atoms with penta‐coordinated metal centers. All of these complexes acted as efficient initiators for the ring‐opening polymerization of L‐lactide and rac‐lactide. Based on kinetic studies, the activity of these metal complexes is significantly influenced by the electronic effect of the ancillary ligands with the electron‐donating substituents at the phenyl rings enhancing the polymerization rate. In addition, the “living” and “immortal” character of 6 has paved a way to synthesize as much as 40‐fold polymer chains of polylactides with a very narrow polydispersity index in the presence of a small amount of initiator. Among all of magnesium complexes, Complex 6 exhibits the highest stereoselectivity toward ring‐opening polymerization of rac‐lactide with Pr up to 88% in THF at 0 °C. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

19.
Crystal structures, single‐molecule magnetic behavior, and ab initio calculations of four new phenoxo‐bridged dinuclear dysprosium complexes and their gadolinium(III) analogues are explored. Complexes [Dy2(DMOMP)2(DBM)4]2 ? CHCl3 ( 1 ; DMOMP=1‐methyl‐3,5‐dimethoxy‐4‐hydroxybenzene, DBM=1,3‐diphenylpropane‐1,3‐dione); [Dy2(DMOAP)2(DBM)4]2 ? CHCl3 ( 2 ; DMOAP=syringaldehyde); Dy2(DMOEP)2(DBM)4 ( 3 ; DMOEP=methyl syringate); and solvent‐free Dy2(DMOMP)2(DBM)4 ( 4 ), which is obtained by the transformation of single crystal into single crystal from 1 , have nearly identical core structures and only differ in the substituents at the para position of the phenol moieties of the bridging ligand. In this system, the electronic effects are efficiently implemented to significantly modify the ligand field strength and exchange coupling by modulating the substituents on the phenol backbone. The effective energy barrier (Ueff) of magnetization reversal is improved significantly to fivefold magnitude, at most, and the hysteresis temperature up to 3.5 K by deliberately using the electron‐withdrawing substituent to replace the electron‐donating one. The origin of the two relaxation processes in 1 is mostly attributed to the existence of two molecules in one unit, which is illuminated by means of the transformation of single crystal into single crystal.  相似文献   

20.
The gas‐phase chemistry of deprotonated benzyl N‐phenylcarbamates was investigated by electrospray ionization tandem mass spectrometry. Characteristic losses of a substituted phenylcarbinol and a benzaldehyde from the precursor ion were proposed to be derived from an ion‐neutral complex (INC)‐mediated competitive proton and hydride transfer reactions. The intermediacy of the INC consisting of a substituted benzyloxy anion and a phenyl isocyanate was supported by both ortho‐site‐blocking experiments and density functional theory calculations. Within the INC, the benzyloxy anion played the role of either a proton abstractor or a hydride donor toward its neutral counterpart. Relative abundances of the product ions were influenced by the nature of the substituents. Electron‐withdrawing groups at the N‐phenyl ring favored the hydrogen transfer process (including proton and hydride transfer), whereas electron‐donating groups favored direct decomposition to generate the benzyloxy anion (or substituted benzyloxy anion). By contrast, electron‐withdrawing and electron‐donating substitutions at the O‐benzyl ring exhibited opposite effects. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号