首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The borrowing hydrogen methodology allows for the use of alcohols as alkylating agents for C?C bond forming processes offering significant environmental benefits over traditional approaches. Iridium(I)‐cyclooctadiene complexes having a NHC ligand with a O‐ or N‐functionalised wingtip efficiently catalysed the oxidation and β‐alkylation of secondary alcohols with primary alcohols in the presence of a base. The cationic complex [Ir(NCCH3)(cod)(MeIm(2‐ methoxybenzyl))][BF4] (cod=1,5‐cyclooctadiene, MeIm=1‐methylimidazolyl) having a rigid O‐functionalised wingtip, shows the best catalyst performance in the dehydrogenation of benzyl alcohol in acetone, with an initial turnover frequency (TOF0) of 1283 h?1, and also in the β‐alkylation of 2‐propanol with butan‐1‐ol, which gives a conversion of 94 % in 10 h with a selectivity of 99 % for heptan‐2‐ol. We have investigated the full reaction mechanism including the dehydrogenation, the cross‐aldol condensation and the hydrogenation step by DFT calculations. Interestingly, these studies revealed the participation of the iridium catalyst in the key step leading to the formation of the new C?C bond that involves the reaction of an O‐bound enolate generated in the basic medium with the electrophilic aldehyde.  相似文献   

2.
The regiodivergent C?H borylation of 2,5‐disubstituted heteroarenes with bis(pinacolato)diboron was achieved by using iridium catalysts formed in situ from [Ir(OMe)(cod)]2/dtbpy (cod=1,5‐cyclooctadiene, dtbpy: 4,4′‐di‐tert‐butyl‐2,2′‐bipyridine) or [Ir(OMe)(cod)]2/2 AsPh3. When [Ir(OMe)(cod)]2/dtbpy was used as the catalyst, borylation at the 4‐position proceeded selectively to afford 4‐borylated products in high yields (dtbpy system A). The regioselectivity changed when the [Ir(OMe)(cod)]2/2 AsPh3 catalyst was used; 3‐borylated products were obtained in high yields with high regioselectivity (AsPh3 system B). The regioselectivity of borylation was easily controlled by changing the ligands. This reaction was used in the syntheses of two different bioactive compound analogues by using the same starting material.  相似文献   

3.
An assessment of the C?H activation catalyst [(COD)Ir(IMes)(PPh3)]PF6 (COD=1,5‐cyclooctadiene, IMes=1,3‐bis(2,4,6‐trimethylphenyl)imidazol‐2‐ylidene) in the deuteration of phenyl rings containing different functional directing groups is divulged. Competition experiments have revealed a clear order of the directing groups in the hydrogen isotope exchange (HIE) with an iridium (I) catalyst. Through DFT calculations the iridium–substrate coordination complex has been identified to be the main trigger for reactivity and selectivity in the competition situation with two or more directing groups. We postulate that the competition concept found in this HIE reaction can be used to explain regioselectivities in other transition‐metal‐catalyzed functionalization reactions of complex drug‐type molecules as long as a C?H activation mechanism is involved.  相似文献   

4.
An unprecedented catalytic system composed of the Wilkinson catalyst [Rh(PPh3)3Cl] and CF3COOH enabled the highly regioselective cross‐coupling of aromatic amines with a variety of heteroarenes through dual C? H bond cleavage. This protocol provided a facile and rapid route from readily available substrates to (2‐aminophenyl)heteroaryl compounds, which may be conveniently transformed into highly extended π‐conjugated heteroacenes. The experimental studies and calculations showed that thianaphtheno[3,2‐b]indoles have large HOMO–LUMO energy gaps and low‐lying HOMO levels, and could therefore potentially be high‐performance organic semiconductors. Herein we report the first use of a rhodium(I) catalyst for oxidative C? H/C? H coupling reactions. The current innovative catalyst system is much less expensive than [RhCp*Cl2]2/AgSbF6 and could open the door for the application of this approach to other types of C? H activation processes.  相似文献   

5.
A family of iridium(I) hydroxides of the form [Ir(cod)(NHC)(OH)] (cod=1,5‐cyclooctadiene, NHC=N‐heterocyclic carbene) is reported. Single‐crystal X‐ray analyses and computational methods were used to explore the structural characteristics and steric properties of these new complexes. The model complex [Ir(cod)(IiPr)(OH)] (IiPr=1,3‐(diisopropyl)imidazol‐2‐ylidene) undergoes reaction with a wide variety of substrates including boronic acids and silicon compounds. In addition, O? H, N? H and C? H bond activation was achieved with alcohols, carboxylic acids, amines and various sp‐, sp2‐ and sp3‐hybridised carbon centres, giving access to a wide range of new IrI complexes. These studies have allowed us to explore the exciting reactivity of this motif, revealing a versatile and useful synthon capable of activating important chemical bonds under mild (typically room temperature) conditions. No additives were required and, in the case of X? H bond activation, water was the only waste product, rendering this an atom efficient procedure for bond activation. This system has great potential for the construction of new catalytic cycles for organic synthesis and small‐molecule activation.  相似文献   

6.
In the presence of a catalyst system consisting of Pd(OAc)2, PCy3, and Zn(OAc)2, the reaction of alkynyl aryl ethers with bicycloalkenes, α,ß‐unsaturated esters, or heteroarenes results in the site‐selective cleavage of two C? H bonds followed by the formation of C? C bonds. In all cases, the alkynyloxy group acts as a directing group for the activation of an ortho C? H bond and as a hydrogen acceptor, thus rendering the use of additives such as an oxidant or base unnecessary.  相似文献   

7.
A chiral CpxRhIII catalyst system in situ generated from a CpxRhI(cod) precatalyst and bis(o‐toluoyl) peroxide as activating oxidant was developed for a C?H activation/ring‐opening sequence between aryl ketoxime ethers and 2,3‐diazabicyclo[2.2.1]hept‐5‐enes. This transformation provides access to densely functionalized chiral cyclopentenylamines in excellent yields and enantioselectivities of up to 97:3 er. The reported method is also well suitable for asymmetric alkenyl C?H functionalizations of α,β‐unsaturated oxime ethers, furnishing skipped dienes with high levels of enantiocontrol.  相似文献   

8.
A dehydrogenative cross‐coupling reaction between allylic C?H bonds and the α‐C?H bond of ketones or aldehydes was developed using Cu(OTf)2 as a catalyst and DDQ as an oxidant. This synthetic approach to γ,δ‐unsaturated ketones and aldehydes has the advantages of broad scope for both ketones and aldehydes as reactants, mild reaction conditions, good yields and atom economy. A plausible mechanism using Cu(OTf)2 as a Lewis acid catalyst was also proposed (DDQ=2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone; Tf=trifluoromethanesulfonate).  相似文献   

9.
A C?H activation strategy has been successfully employed for the high‐yielding synthesis of a diverse array of 4‐substituted 2‐quinolinone species by a palladium‐catalyzed dehydrogenative coupling involving diarylamines. This intermolecular annulation approach incorporates readily available α,β‐unsaturated carboxylic acids as the coupling partner by suppressing the facile decarboxylation. Based on preliminary mechanistic studies, a reaction sequence is proposed, involving ortho palladation, π‐coordination, β‐migratory insertion, and β‐hydride elimination.  相似文献   

10.
Direct catalytic addition of alkylnitriles to aldehydes allows for an atom‐economical access to β‐hydroxynitriles under proton transfer conditions. Direct use of alkylnitriles as pronucleophiles has been hampered due to their low acidity resulting in an inability to generate α‐cyano carbanions in a catalytic manner. A transition metal/N‐heterocyclic carbene (NHC) complex prepared from [{Rh(OMe)(cod)}2] and an imidazolium‐based carbene was identified as an effective catalyst to promote the reaction with as little as 1.25 mol % of catalyst loading. The corresponding Rh complex, derived from chiral triazolium salt, rendered the reaction enantioselective, albeit with moderate enantioselectivity.  相似文献   

11.
A mechanistic study was performed on the Rh‐catalyzed stereoselective C?C/C?H activation of tert‐cyclobutanols. The present study corroborated the previous proposal that the reaction occurs by metalation, β‐C elimination, 1,4‐Rh transfer, C?O insertion, and a final catalyst‐regeneration step. The rate‐determining step was found to be the 1,4‐Rh transfer step, whereas the stereoselectivity‐determining step did not correspond to any of the aforementioned steps. It was found that both the thermodynamic stability of the product of the β‐C elimination and the kinetic feasibility of the 1,4‐Rh transfer and C?O insertion steps made important contributions. In other words, three steps (i.e., β‐C elimination, 1,4‐Rh transfer, and C?O insertion) were found to be important in determining the configurations of the two quaternary stereocenters.  相似文献   

12.
The first copper‐catalyzed intramolecular C(sp3)? H and C(sp2)? H oxidative amidation has been developed. Using a Cu(OAc)2 catalyst and an Ag2CO3 oxidant in dichloroethane solvent, C(sp3)? H amidation proceeded at a terminal methyl group, as well as at the internal benzylic position of an alkyl chain. This reaction has a broad substrate scope, and various β‐lactams were obtained in excellent yield, even on gram scale. Use of CuCl2 and Ag2CO3 under an O2 atmosphere in dimethyl sulfoxide, however, leads to 2‐indolinone selectively by C(sp2)? H amidation. Kinetic isotope effect (KIE) studies indicated that C? H bond activation is the rate‐determining step. The 5‐methoxyquinolyl directing group could be removed by oxidation.  相似文献   

13.
Described is the development of a new class of bis(cyclometalated) ruthenium(II) catalyst precursors for C? C coupling reactions between alkene and alkyne substrates. The complex [(cod)Ru(3‐methallyl)2] reacts with benzophenone imine or benzophenone in a 1:2 ratio to form bis(cyclometalated) ruthenium(II) complexes ( 1 ). The imine‐ligated complex 1 a promoted room‐temperature coupling between acrylic esters and amides with internal alkynes to form 1,3‐diene products. A proposed catalytic cycle involves C? C bond formation by oxidative cyclization, β‐hydride elimination, and C? H bond reductive elimination. This RuII/RuIV pathway is consistent with the observed catalytic reactivity of 1 a for mild tail‐to‐tail methyl acrylate dimerization and for cyclobutene formation by [2+2] norbornene/alkyne cycloaddition.  相似文献   

14.
Various aryl‐, alkenyl‐, and/or alkyllithium species reacted smoothly with aryl and/or benzyl ethers with cleavage of the inert C?O bond to afford cross‐coupled products, catalyzed by commercially available [Ni(cod)2] (cod=1,5‐cyclooctadiene) catalysts with N‐heterocyclic carbene (NHC) ligands. Furthermore, the coupling reaction between the aryllithium compounds and aryl ammonium salts proceeded under mild conditions with C?N bond cleavage in the presence of a [Pd(PPh3)2Cl2] catalyst. These methods enable selective sequential functionalizations of arenes having both C?N and C?O bonds in one pot.  相似文献   

15.
Chlorine radical, which is classically generated by the homolysis of Cl2 under UV irradiation, can abstract a hydrogen atom from an unactivated C(sp3)?H bond. We herein demonstrate the use of HCl as an effective hydrogen‐atom‐transfer catalyst precursor activated by an organic acridinium photoredox catalyst under visible‐light irradiation for C?H alkylation and allylation. The key to success relied on the utilization of microtubing reactors to maintain the volatile HCl catalyst. This photomediated chlorine‐based C?H activation protocol is effective for a variety of unactivated C(sp3)?H bond patterns, even with primary C(sp3)?H bonds, as in ethane. The merit of this strategy is illustrated by rapid access to several pharmaceutical drugs from abundant unfunctionalized alkane feedstocks.  相似文献   

16.
Copper‐catalyzed oxidative couplings of N‐allylbenzamides for C?N and C?O bond formations have been developed through C?H bond functionalization. To demonstrate the utility of this approach, it was applied to the synthesis of β‐aminoimides and imides. To the best of our knowledge, these are the first examples in which different classes of N‐containing compounds have been directly prepared from the readily available N‐allylbenzamides using an inexpensive catalyst/oxidant/base (CuSO4/TBHP/Cs2CO3) system.  相似文献   

17.
A cobalt‐catalyzed chelation‐assisted tandem C?H activation/C?C cleavage/C?H cyclization of aromatic amides with alkylidenecyclopropanes is reported. This process allows the sequential formation of two C?C bonds, which is in sharp contrast to previous reports on using rhodium catalysts for the formation of C?N bonds. Here the inexpensive catalyst system exhibits good functional‐group compatibility and relatively broad substrate scope. The desired products can be easily transformed into polycyclic lactones with m‐CPBA. Mechanistic studies revealed that the tandem reaction proceeds through a C?H cobaltation, β‐carbon elimination, and intramolecular C?H cobaltation sequence.  相似文献   

18.
The steric effects of substituents on five‐membered rings are less pronounced than those on six‐membered rings because of the difference in bond angles. Thus, the regioselectivities of reactions of five‐membered heteroarenes that occur with selectivities dictated by steric effects, such as the borylation of C?H bonds, have been poor in many cases. We report that the silylation of five‐membered‐ring heteroarenes occurs with high sterically derived regioselectivity when catalyzed by the combination of [Ir(cod)(OMe)]2 (cod=1,5‐cyclooctadiene) and a phenanthroline ligand or a new pyridyl‐imidazoline ligand that further increases the regioselectivity. The silylation reactions with these catalysts produce high yields of heteroarylsilanes from functionalization at the most sterically accessible C?H bonds of these rings under conditions that the borylation of C?H bonds with previously reported catalysts formed mixtures of products or products that are unstable. The heteroarylsilane products undergo cross‐coupling reactions and substitution reactions with ipso selectivity to generate heteroarenes that bear halogen, aryl, and perfluoroalkyl substituents.  相似文献   

19.
A cobalt‐N‐heterocyclic carbene catalyst generated from CoBr2, imidazolium salt, and cyclohexylmagnesium bromide was found to promote the imine‐directed C2‐alkylation of indoles with nonconjugated arylalkenes through a tandem alkene isomerization–hydroarylation process, affording 1,1‐diarylalkanes with exclusive regioselectivity. The feasibility of the tandem catalysis was demonstrated for allyl‐, homoallyl‐, and bishomoallylbenzene derivatives. The catalytic system is also applicable to a variety of β‐substituted styrene derivatives. Mechanistic experiments using deuterium‐labeled indole substrate and Grignard reagent provided insight into the cobalt‐mediated C? H activation step, which likely involves exchange of the C2‐hydrogen atom of the former and the β‐hydrogen atoms of the latter.  相似文献   

20.
The electronically unsaturated dirhenium complex [Re2(CO)8(μ‐H)(μ‐Ph)] ( 1 ) has been found to exhibit aromatic C?H activation upon reaction with N,N‐diethylaniline, naphthalene, and even [D6]benzene to yield the compounds [Re2(CO)8(μ‐H)(μ‐η1‐NEt2C6H4)] ( 2 ), [Re2(CO)8(μ‐H)(μ‐η2‐1,2‐C10H7)] ( 3 ), and [D6]‐ 1 , respectively, in good yields. The mechanism has been elucidated by using DFT computational analyses, and involves a binuclear C?H bond‐activation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号