首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of 2-chloromercuryfuran and t-butyl-bromide was studied by UV photoelectron spectroscopy. During the reaction the formation of t-butylfuran, 2,5-di-t-butyl-furan, t-butylchloride, isobutylene and furan were found. In accordance with the experimental observations a novel reaction mechanism has been proposed. The first fast and the second slow step of the reaction has been interpreted. The corresponding thiophene derivative gave similar results.  相似文献   

2.
Thermally cleavable multiarm star polymers containing thermo‐reversible furan–maleimide cycloadduct‐based core were synthesized using dendritic macroinitiators. Peripheries of dendritic macroinitiators were modified with bromine containing free radical initiators to obtain multiarm polymers by utilizing atom transfer radical polymerization (ATRP). Cleavage of thus obtained multiarm polymers was achieved via the retro Diels–Alder cycloreversion reaction of the furan–maleimide core at elevated temperatures. As an alternative approach, combination of multiarm polymers containing a furan and maleimide functional group at their core was attempted to realize that the steric bulk does not allow their formation. Hence the “grafting‐from” route using a thermally fragmentable trigger containing multiarm initiators provides a plausible methodology for fabrication of such thermally cleavable multiarm polymeric materials. Syntheses of dendritic initiators, formation of star polymers as well as their fragmentation were followed by proton nuclear magnetic resonance spectroscopy and size exclusion chromatography. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 885–893  相似文献   

3.
In the present study, the reaction conditions for homodimerization process of 3-acetylcoumarin were achieved under sonication using combination of zinc and metallic salt (ZnCl2 or Zn(OAc)2). Appropriate frequency and sound amplitude have been identified as significant variables for the initiation of the reaction. On the base of first principal calculations and experimental results, the mechanism of the reaction was investigated. The relative stability of the possible intermediates has been compared, including evaluation on the ionic and radical reaction pathways for the dimerization process. Theoretical results suggested that the radical mechanism is more favorable. The C-C bond formation between the calculated radical intermediates occurs spontaneously (∆G = −214 kJ/mol for ZnCl2, −163 kJ/mol in the case of Zn(OAc)2), which proves the possibility for the homodimerization of 3-acetylcoumarin via formation of radical species. Both experimental and theoretical data clarified the activation role of the solvent on the reactivity of the Zn-salt. The formation of complexes of solvent molecules with Zn-atom from the ZnCl2 reduces the energy barrier for the dissociation of Zn-Cl bond and facilitate the formation of the dimeric product.  相似文献   

4.
The semi-empirical SCF MNDO method has been used to calculate the radical reactivities for each reaction site in some neutral furan molecules as the average of the HOMO and LUMO probabilities both in 2pz atomic orbitals 1
  • 1 SCF: Self-consistent field; MNDO: modified neglect of differential overlap; HOMO: highest occupied molecular orbital; LUMO: lowest unoccupied molecular orbital.
  • . The carbon atoms C5 and C2 of of the furan ring are the most favoured sites except for the furan derivatives holding a double bond in the substituent group. Also the SOMO 2
  • 2 SOMO: Single occupied molecular orbital.
  • probabilities of the radicals formed by addition of a hydrogen atom or a vinyl acetate model radical were calculated. Thus, once a radical is added to the C5 position the resulting radical can be partially localized on the carbon C2. Furthermore, the enthalpy of reaction for several radicals was estimated by using the calculated heats of formation of the neutral furan molecules and their radicals. The radical addition to the carbon C 5 resulted in the most exothermic reaction in comparison with other reaction sites of the molecule. However, no correlation was found between the calculated enthalpies and the degradative-transfer kinetic constants experimentally determined for the radical polymerization of vinyl acetate in the presence of the furan compounds under study.  相似文献   

    5.
    A new sulfinate salt‐mediated radical relay for the completion of C(sp3)?H bond indenylation of cyclic ethers with readily available 2‐alkynylbenzonitriles by combining silver/tert‐butyl peroxide (TBHP) was established, providing a wide range of 3‐alkylated 1‐indenones with generally good yields. Interestingly, the current reaction system can tolerate an S‐centered radical and a C‐centered radical in one pot, in which the S‐centered radical promotes the formation of the C‐centered radical to induce a radical cascade without disturbing the reaction process. A reaction mechanism is also proposed based on control experiments.  相似文献   

    6.
    The activation of carbon dioxide by catalytic hydrogenation has been studied as a route for methanol synthesis. Metal/zirconia catalysts suitable for this reaction have been prepared by (i) activation of amorphous metal alloys [1] or (ii) coprecipitation of amorphous zirconia and metal oxides [2]. Vibrational spectroscopy has been used to obtain information on the catalytic reaction mechanism, by the in situ identification of adsorbed species and intermediates under reaction conditions.The reverse water-gas shift reaction, producing CO from CO2 and hydrogen, plays a crucial role in the reaction mechanism. This reduction is shown to proceed via surface formate, adsorbed close to the metal/zirconia interface. Over Pd/ZrO2 and Ni/ZrO2, formate is reduced to methane without further observable intermediates. Pivotal intermediates on the route to methanol, as observed on Cu/ZrO2 catalysts, are -bound formaldehyde and surface methylate. Addition of silver as a promoter can result in enhanced selectivities and productivities for methanol formation. The synergy between the two metals becomes evident from the spectroscopic measurements; the most prominent feature of the silver-promoted catalysts is a high concentration of surface formaldehyde, which is either preferentially formed or stabilized by the silver component.  相似文献   

    7.
    Difluorinated alkenoate ethyl 3,3-difluoro-2-(N,N-diethylcarbamoyloxy)-2-propenoate reacts rapidly and in high yield with furan and a range of substituted furans in the presence of a tin(IV) catalyst. Non-fluorinated congener 2-(N,N-diethylcarbamoyloxy)-2-propenoate fails to react at all under the same conditions. These reactions have been explored using density functional theory (DFT) calculations. They reveal a highly polar transition state, which is stabilized by the Lewis acid catalyst SnCl(4) and by polar solvents. In the presence of both catalyst and solvent, a two-step reaction is predicted, corresponding to the stepwise formation of the two new carbon-carbon bonds via transition states which have similar energies in all cases. Our experimental observations of the lack of reaction of the non-fluorinated dienophile, the stereochemical outcomes, and the rate acceleration accompanying furan methylation are all well predicted by our calculations. The calculated free energy barriers generally correlate well with measured reaction rates, supporting a reaction mechanism in which zwitterionic character is developed strongly. An in situ ring opening reaction of exo-cycloadduct ethyl exo-2-(N,N-diethylcarbamoyloxy)-3,3-difluoro-7-oxabicyclo[2.2.1]hept-5-enyl-2-endo-carboxylate, which results in the formation of cyclic carbonate ethyl 4,4-difluoro-5-hydroxy-2-oxo-5,7a-dihydro-4H-benzo[1,3]dioxole-3a-carboxylate by a Curtin-Hammett mechanism, has also been examined. Substantial steric opposition to Lewis acid binding prevents carbonate formation from 2-substituted furans.  相似文献   

    8.
    The silver(I)‐catalyzed synthesis picture of axially chiral allenes based on propargylamines has been outlined using density functional theory (DFT) method for the first time. Our calculations find that, the coordination of silver(I) into triple bond of propargylamines at anti‐position of nitrogen shows a stronger activation on the triple bond than that at cis‐position, which is favorable for the subsequent hydrogen transfer. The NBO charge analysis for the hydrogen transfer affirms the experimental speculation that this step is a hydride transfer process. The energy barrier of the anti‐periplanar elimination of vinyl‐silver is 26.9 kJ·mol?1 lower than that of the syn‐periplanar elimination, supporting that (?)‐allene is the main product of this reaction. In a word, the most possible route for this reaction is that the silver(I) coordinates into the triple bond of propargylamines at anti‐position of nitrogen, then the formed silver(I) complex undergoes a hydride transfer to give a vinyl‐silver, finally the vinyl‐silver goes through an anti‐periplanar elimination to give (?)‐allene. The hydride transfer with the energy barrier of 44.8 kJ·mol?1 is the rate‐limiting step in whole catalytic process. This work provides insight into why this reaction has a very high enantioselectivity.  相似文献   

    9.
    The mechanisms of the photochemical isomerization reactions were investigated theoretically using three model systems; 2‐methylthiophene, 2‐cyanothiophene, and 2‐phenylthiophene. The CASSCF (10‐electron/eight‐orbital active space) and MP2‐CAS methods were employed with the 6‐311(d) basis set. Three mechanisms, i.e., the internal cyclization‐isomerization route (path A), the zwitterion‐tricyclic route (path B), and the direct route (path C), have been used to explore the real photochemical reaction mechanism of these three model molecules. The structures of the conical intersections, which play a key role in such phototranspositions, were obtained. The intermediates and transition structures of the ground states were also calculated to assist in providing a qualitative explanation of the reaction pathways. Our model investigations suggest that the preferred reaction route is as follows: reactant → Franck‐Condon region → conical intersection → photoproduct. In particular, the conical intersection mechanism described in this work gives a better explanation than either the previously proposed internal cyclization‐isomerization (path A) or the zwitterion‐tricyclic pathway (path B) mechanisms, and is supported by the experimental observations. The results obtained allow a number of predictions to be made. © 2009 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

    10.
    This report describes a gold(III)‐catalyzed efficient general route to densely substituted chiral 3‐formyl furans under extremely mild conditions from suitably protected 5‐(1‐alkynyl)‐2,3‐dihydropyran‐4‐one using H2O as a nucleophile. The reaction proceeds through the initial formation of an activated alkyne–gold(III) complex intermediate, followed by either a domino nucleophilic attack/anti‐endo‐dig cyclization, or the formation of a cyclic oxonium ion with subsequent attack by H2O. To confirm the proposed mechanistic pathway, we employed MeOH as a nucleophile instead of H2O to result in a substituted furo[3,2‐c]pyran derivative, as anticipated. The similar furo[3,2‐c]pyran skeleton with a hybrid carbohydrate–furan derivative has also been achieved through pyridinium dichromate (PDC) oxidation of a substituted chiral 3‐formyl furan. The corresponding protected 5‐(1‐alkynyl)‐2,3‐dihydropyran‐4‐one can be synthesized from the monosaccharides (both hexoses and pentose) following oxidation, iodination, and Sonogashira coupling sequences. Furthermore, to demonstrate the potentiality of chiral 3‐formyl furan derivatives, a TiBr4‐catalyzed reaction of these derivatives has been shown to offer efficient access to 1,5‐dicarbonyl compounds, which on treatment with NH4OAc in slightly acidic conditions afforded substituted furo[3,2‐c]pyridine.  相似文献   

    11.
    The mechanisms of photochemical isomerization reactions are investigated theoretically by using a model system of 1,2,4‐ oxadiazole with the CAS(14,9)/6‐311G(d) and MP2‐CAS‐(14,9)/ 6‐311++G(3df,3pd)//CAS(14,9)/6‐311G(d) methods. Three reaction pathways are examined, including 1) the direct mechanism, 2) the ring contraction–ring expansion mechanism, and 3) the internal cyclization–isomerization mechanism, which lead to two types of photoisomers. The theoretical findings suggest that conical intersections play a crucial role in the photorearrangement of 1,2,4‐oxadiazoles. These model investigations also indicate that the preferred reaction route for 1,2,4‐oxadiazole, which leads to phototransposition products, is as follows: reactant → Franck‐Condon region → conical intersection → photoproduct. In other words, the direct mechanism is a one‐step process that has no barrier. These theoretical results agree with the available experimental observations.  相似文献   

    12.
    The preparation of annulated furan systems as key synthetic intermediates through the application of a two-step annulation involving an electrochemical ring closure between a furan and a silyl enol ether has been studied. The reaction was shown to be quite general for the formation of six-membered rings in good yields and was tolerant of a variety of different functional groups. The ring closure was highly stereoselective, leading to the formation of cis-fused systems. Cyclic voltammetry and probe molecules were used to gain mechanistic insight into the reaction. These studies suggested that the key ring closure involved an initial oxidation of the silyl enol ether to a radical cation followed by a furan-terminated cyclization.  相似文献   

    13.
    Metathesis of 2-vinyl aromatic heterocycles such as furan, thiophene, pyrrole and pyridine in the presence of a molybdenum-based Schrock catalyst has been investigated from a synthetic point of view. The self-metathesis of 2-vinyl aromatic heterocycles was not successful. However, in cross-metathesis of thiophene, furan and styrene with 1-octene, the cross-metathesis product, heterodimer, was readily obtained selectively, together with only small amounts of the two corresponding self-metathesis products. The origin of the surprisingly high selectivity of heterodimer formation was elucidated through metallacyclobutane intermediate mechanism, observations of carbenes by in situ 1H NMR, and reaction products.  相似文献   

    14.
    Diverse furoxans (1,2,5‐oxadiazole 2‐oxides) were synthesized from the corresponding styrenes using nitrosonium tetrafluoroborate as the nitrosation reagent in pyridine (basic media) or dichloromethane (neutral media). Acid‐sensitive functional groups were tolerated under these conditions. The probable reaction mechanism was elucidated. The experimental results support an ionic reaction pathway in contrast to the conventional acidic conditions with a radical mechanism.  相似文献   

    15.
    Diels–Alder click reaction was successfully applied for the preparation of 3‐arm star polymers (A3) using furan protected maleimide end‐functionalized polymers and trianthracene functional linking agent (2) at reflux temperature of toluene for 48 h. Well‐defined furan protected maleimide end‐functionalized polymers, poly (ethylene glycol), poly(methyl methacrylate), and poly(tert‐butyl acrylate) were obtained by esterification or atom transfer radical polymerization. Obtained star polymers were characterized via NMR and GPC (refractive index and triple detector detection). Splitting of GPC traces of the resulting polymer mixture notably displayed that Diels–Alder click reaction was a versatile and a reliable route for the preparation of A3 star polymer. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 302–313, 2008  相似文献   

    16.
    The results presented here provide additional support for our hypothesis based on the relative basicity of the reaction controlling functional group to rationalize experimental observations on intramolecular Diels-Alder reactions with a furan diene (IMDAF) regarding the quantity (0.1 or 1.1 equiv) of Lewis acid required to facilitate the reaction most effectively. Heats of formation, DeltaH(f), and heats of reaction, DeltaH(R), have been obtained using AM1 calculations for 26 IMDAF reactions. These DeltaH(R) are generally exothermic (indicating that these IMDAF reactions are favorable) and can be qualitatively correlated with experimental yields of adduct, thereby providing a means of predicting the feasibility of the IMDAF promoted by 0.1 equiv of Lewis acid. The equilibria involved in the Lewis acid-promoted IMDAF reaction have been qualitatively interpreted using reaction coordinate diagrams and quantitatively investigated by generating a mathematical simulation of the reaction scheme. This demonstrates that the experimental behavior of the IMDAF reaction is well represented by the relative basicity hypothesis and that the LA concentration-dependent behavior should also be observed for other Lewis acid-promoted organic reactions.  相似文献   

    17.
    Oxidative [3+3] cycloadditions offer an efficient route for six‐membered‐ring formation. This approach has been realized based on an electrochemical oxidative coupling of indoles/enamines with active methylene compounds followed by tandem 6π‐electrocyclization leading to the synthesis of dihydropyrano[4,3‐b]indoles and 2,3‐dihydrofurans. The radical–radical cross‐coupling of the radical species generated by anodic oxidation combined with the cathodic generation of the base from O2 allows for mild reaction conditions for the synthesis of structurally complex heterocycles.  相似文献   

    18.
    The mechanism for methane formation in methyl-coenzyme M reductase (MCR) has been investigated using the B3LYP hybrid density functional method and chemical models consisting of 107 atoms. The experimental X-ray crystal structure of the enzyme in the inactive MCR(ox1)(-)(silent) state was used to set up the initial model structure. The calculations suggest a mechanism not previously proposed, in which the most remarkable feature is the formation of an essentially free methyl radical at the transition state. The reaction cycle suggested starts from a Michaelis complex with CoB and methyl-CoM coenzymes bound and with a squareplanar coordination of the Ni(I) center in the tetrapyrrole F(430) prosthetic group. In the rate-limiting step the methyl radical is released from methyl-CoM, induced by the attack of Ni(I) on the methyl-CoM thioether sulfur. In this step, the metal center is oxidized from Ni(I) to Ni(II). The resulting methyl radical is rapidly quenched by hydrogen-atom transfer from the CoB thiol group, yielding the methane molecule and the CoB radical. The estimated activation energy is around 20 kcal/mol, which includes a significant contribution from entropy due to the formation of the free methyl. The mechanism implies an inversion of configuration at the reactive carbon. The size of the inversion barrier is used to explain the fact that CF(3)-S-CoM is an inactive substrate. Heterodisulfide CoB-S-S-CoM formation is proposed in the final step in which nickel is reduced back to Ni(I). The suggested mechanism agrees well with experimental observations.  相似文献   

    19.
    The ionic liquid 1‐butyl‐3‐methylimidazolium tetrafluoroborate [BMIm][BF4] has demonstrated high efficiency when applied as a solvent in the oxidative nitro‐Mannich carbon? carbon bond formation. The copper‐catalyzed cross‐dehydrogenative coupling (CDC) between N‐phenyltetrahydroisoquinoline and nitromethane in [BMIm][BF4] occurred with high yield under the described reaction conditions. Both the ionic liquid and copper catalyst were recycled nine times with almost no lost of activity. The electrochemical behavior of the tertiary amine substrate and β‐nitroamine product was investigated employing [BMIm][BF4] as electrolyte solvent. The potentiostatic electrolysis in ionic liquid afforded the desired product with a high yield. This result and the cyclic voltammetric investigation provide a better understanding of the reaction mechanism, which involves radical and iminium cation intermediates.  相似文献   

    20.
    The present study employs a complete theoretical investigation, at the B3LYP/cc‐pVTZ level of theory, of the interactions between the tyrosyl radical and nitric oxide, exploring in detail the nitrotyrosine formation radical mechanism. Tyrosyl radicals play an essential role in catalytic reactions of numerous enzymes and biological systems have regulated appropriate mechanisms for their formation. Nitric oxide reacts with the tyrosyl radical and affords a weak intermediate complex which, through a sequence of non‐ionic water catalyzed and biologically feasible intermediate reactions, yields the iminoxyl radical. The iminoxyl radical further combines with hydroxyl radical, a species present in pathophysiological conditions, to yield nitrotyrosine.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号