首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organic molecular devices for information processing applications are highly useful building blocks for constructing molecular‐level machines. The development of “intelligent” molecules capable of performing logic operations would enable molecular‐level devices and machines to be created. We designed a series of 2,5‐diaryl‐1,3,4‐oxadiazoles bearing a 2‐(para‐substituted)phenyl and a 5‐(o‐pyridyl) group (substituent X=NMe2, OEt, Me, H, and Cl; 1 a – e ) that form a bidentate chelating environment for metal ions. These compounds showed fluorescence response profiles varying in both emission intensity and wavelength toward the tested metal ions Ni2+, Cu2+, Zn2+, Cd2+, Hg2+, and Pb2+ and the responses were dependent on the substituent X, with those of 1 d being the most substantial. The 1,3,4‐oxadiazole O or N atom and pyridine N atom were identified as metal‐chelating sites. The fluorescence responses of 1 d upon metal chelation were employed for developing truth tables for OR, NOR, INHIBIT, and EnNOR logic gates as well as “ON‐OFF‐ON” and “OFF‐ON‐OFF” fluorescent switches in a single 1,3,4‐oxadiazole molecular system.  相似文献   

2.
The development of molecular frameworks derived from binuclear platinum(II) aromatic Schiff base (salphen) complexes and their supramolecular chemistry have been undertaken. A series of axially rotating (Pt‐salphen)2 luminophores, tethered in a cofacial manner by a rigid linker (xanthene, 1 ; dibenzofuran, 2 ; biphenylene, 3 ), was synthesized in which the O(salphen) groups are potentially amenable for guest‐binding. The molecular structures of 1 and 3 have been determined by X‐ray crystallography, revealing intra‐ and intermolecular π‐stacking interactions, as well as contrasting syn ( 1 ) and anti ( 3 ) configurations, for the (Pt‐salphen)2 moiety. All complexes are luminescent in solution at room temperature. Their photophysical and solvatochromic properties have been examined, and the emissions are assigned to mixed triplet O(p)/Pt(d)→π*(diimine) excited states. The red‐shifted fluid emissions and lower quantum yields of 1 and 3 , relative to 2 , are ascribed to enhanced intramolecular π‐stacking interactions. Photophysical changes and selective responses to metal ions (particularly Pb2+) have been investigated by using various spectroscopic methods and DFT calculations, and through comparative studies with control complexes. A plausible binding mechanism is proposed based on occupation of the O(salphen)‐binding cavity, which induces perturbation of intramolecular π–π interactions, and hence the self‐quenching and emission properties, of the (Pt‐salphen)2 unit.  相似文献   

3.
The bis(diphenylphosphino)methane (dppm)‐bridged dinuclear cycloplatinated complex {[Pt(L)]2(μ‐dppm)}2+ (Pt2 ? dppm; HL: 2‐phenyl‐6‐(1H‐pyrazol‐3‐yl)‐pyridine) demonstrates interesting reversible “pivot‐hinge”‐like intramolecular motions in response to the protonation/deprotonation of L. In its protonated “closed” configuration, the two platinum(II) centers are held in position by intramolecular d8–d8 Pt–Pt interaction. In its deprotonated “open” configuration, such Pt–Pt interaction is cleaved. To further understand the mechanism behind this hingelike motion, an analogous dinuclear cycloplatinated complex, {[Pt(L)]2(μ‐dchpm)}2+ (Pt2 ? dchpm) with bis(dicyclohexylphosphino)methane (dchpm) as the bridging ligand, was synthesized. From its protonation/deprotonation responses, it was revealed that aromatic π–π interactions between the phenyl moieties of the μ‐dppm and the deprotonated pyrazolyl rings of L was essential to the reversible cleavage of the intramolecular Pt–Pt interaction in Pt2 ? dppm. In the case of Pt2 ? dchpm, spectroscopic and spectrofluorometric titrations as well as X‐ray crystallography indicated that the distance between the two platinum(II) centers shrank upon deprotonation, thus causing a redshift in its room‐temperature triplet metal–metal‐to‐ligand charge‐transfer emission from 614 to 625 nm. Ab initio calculations revealed the presence of intramolecular hydrogen bonding between the deprotonated and negatively charged 1‐pyrazolyl‐N moiety and the methylene CH and phenyl C–H of the μ‐dppm. The “open” configuration of the deprotonated Pt2 ? dppm was estimated to be 19 kcal mol?1 more stable than its alternative “closed” configuration. On the other hand, the open configuration of the deprotonated Pt2 ? dchpm was 6 kcal mol?1 less stable than its alternative closed configuration.  相似文献   

4.
We report the preparation and characterization of dinuclear Pt–Ln complexes constructed from a square‐planar PtII core bearing an ethynyl–terpyridine residue connected to platinum by the ethynyl bond. Complexation of the neutral Eu(hfac)3 (hfac=hexafluoroacetylacetonate) fragment to free terpyridine (terpy) gives a stable bimetallic complex (log β=6.7). In the crystal structure, the flat Pt?terpy core coordinates to EuIII, which is nonacoordinated with the three nitrogen atoms of the terpy subunit and six oxygen atoms of the three hfac ligands. These atoms form a distorted monocapped square antiprism with a pseudo‐C2 symmetry axis passing through the nitrogen atom of the central pyridine ring and the Eu atom. Spectroscopic measurements showed that irradiation with visible light of wavelength up to 460 nm in the 1MLCT state of the Pt subunit resulted in a quantitative energy transfer to the Eu center, which strongly luminesces in the red with an overall luminescence quantum yield of 38 %. The energy‐transfer process is quantitative and not sensitive to oxygen, and the complexation of Eu to the Pt metallosynthon allows the recovery of the energy lost due to triplet‐oxygen quenching of the 3MLCT state observed in the uncomplexed Pt precursor.  相似文献   

5.
A terpyridine derivative DPTP [di-(4-methylphenyl)-2,2':6',2"-terpyridine] was conveniently synthesized from 2-bromopyridine via halogen-dance reaction, Kharash coupling and Stille coupling reaction. Then its corresponding ruthenium complex Ru-DPTP [N,N,N-4,4''-di-(4-methy,phenyl)-2,2':6',2"-terpyridine-N,N,N-tris(is,-thi,cyanat,)- ruthenium(H) ammonium] was obtained and fully characterized by IR, UV-Vis, ESI MS and elemental analysis. The MLCT absorption band of Ru-DPTP was blue-shifted from 570 to 500 nm upon addition of Hg^2+. Among a series of surveyed metal ions, the complex showed a unique recognition to Hg^2+, indicating that it can be used as a selective colorimetric sensor for Hg^2+.  相似文献   

6.
The shape of ligand strands composed of six‐membered aza‐heterocycles (het) connected at the α and α′ positions by hydrazone (hyz) units is determined in a predictable fashion by the nature of the heterocyclic groups (pyridine, pyrimidine, pyrazine etc.), and covers the range from extended linear to compact helical structures. The binding of metal ions to the coordination subunits, defined by the het‐hyz sequences, leads to marked shape changes by inter‐converting bent and linear conformations of the subunits, thus inducing relative motions of strand domains either in the same (con‐sense, “twirling”) or in opposite (dis‐sense, “flapping”) directions. The amplitude of the motion induced by metal‐ion binding and release and the relative directions of the formal motions can be controlled by the nature of the heterocyclic units. Thus, motions around a central 4,6‐disubstituted pyrimidine are dis‐sense motions, whereas there are con‐sense motions around a central 2,5‐disubstituted pyrazine unit, as illustrated by model ligands 1 and 2 , respectively. The more extended helical 3 and undulating (zigzag shape) 4 ligands undergo larger‐amplitude motions combining the relative displacements displayed by 1 and 2 . Ligands 3 and 4 form linear tetranuclear PbII and ZnII complexes, thus producing an extension motion. The same holds for [Ru( 4 )(terpy)4](PF6)8 (terpy=terpyridine). Reversible acid–base‐triggered molecular motions have been generated with [Zn4( 4 )(OTf)8] (TfOH=triflic acid).  相似文献   

7.
The interaction between the ruthenium polypyridyl complex [Ru(terpy)(dcbpy)(H2O)]2+ (terpy=2,2′;6′,2“‐terpyridine, dcbpy=6,6′‐dichloro‐2,2′‐bipyridine) and phospholipid membranes containing either thioether ligands or cholesterol were investigated using UV–visible spectroscopy, Langmuir–Blodgett monolayer surface pressure measurements, and isothermal titration calorimety (ITC). When embedded in a membrane, the thioether ligand coordinated to the dicationic metal complex only when the phospholipids of the membrane were negatively charged, that is, in the presence of attractive electrostatic interaction. In such a case coordination is much faster than in homogeneous conditions. A two‐step model for the coordination of the metal complex to the membrane‐embedded sulfur ligand is proposed, in which adsorption of the complex to the negative surface of the monolayers or bilayers occurs within minutes, whereas formation of the coordination bond between the surface‐bound metal complex and ligand takes hours. Finally, adsorption of the aqua complex to the membrane is driven by entropy. It does not involve insertion of the metal complex into the hydrophobic lipid layer, but rather simple electrostatic adsorption at the water–bilayer interface.  相似文献   

8.
The mononuclear manganese bis‐terpyridine complex [Mn(tolyl‐terpy)2](X)3 ( 1 (X)3; X=BF4, ClO4, PF6; tolyl‐terpy=4′‐(4‐methylphenyl)‐2,2′:6′,2“‐terpyridine), containing Mn in the unusual +III oxidation state, has been isolated and characterised. The 1 3+ ion is a rare example of a mononuclear MnIII complex stabilised solely by neutral N ligands. Complex 1 3+ is obtained by electrochemical oxidation of the corresponding MnII compound 1 2+ in anhydrous acetonitrile. Under these conditions the cyclic voltammogram of 1 2+ exhibits not only the well‐known MnII/MnIII oxidation at E1/2=+0.91 V versus Ag/Ag+ (+1.21 V vs. SCE) but also a second metal‐based oxidation process corresponding to MnIII/MnIV at E1/2=+1.63 V (+1.93 V vs. SCE). Single crystals of 1 (PF6)3?2 CH3CN were obtained by an electrocrystallisation procedure. X‐ray analysis unambiguously revealed its tetragonally compressed octahedral geometry and high‐spin character. The electronic properties of 1 3+ were investigated in detail by magnetic measurements and theoretical calculations, from which a D value of +4.82 cm?1 was precisely determined. Density functional and complete active space self consistent field ab initio calculations both correctly predict a positive sign of D, in agreement with the compressed tetragonal distortion observed in the X‐ray structure of 1 (PF6)3?2 CH3CN. The different contributions to D were calculated, and the results show that 1) the spin–orbit coupling part (+2.593 cm?1) is predominant compared to the spin–spin interaction (+1.075 cm?1) and 2) the excited triplet states make the dominant contribution to the total D value.  相似文献   

9.
The platinum(Ⅱ) terpyridyl acetylide complex [Pt(terpy)(C≡CR)]ClO4 (terpy=2,2‘ : 6‘2“-terpyridine, R=CH2CH2CH3) (1) was incorporated into Nation membranes. At high loading the dry membranes exhibit intense photoluminescence with λmax at 707 nm from the ^3MMLCT state, which was not observed in fluid solution. Upon exposure to the vapor of polar volatile organic compounds (VOC), this photoluminescence was significantly red-shifed. This process was fully reversible when the VOC-incorporated membrane was dried in air. The dramatic and reversible changes in the emission spectra made the Nation-supported complex as an interesting sensor candidate for polar VOC.  相似文献   

10.
A chloroform membrane system containing a given mixture of dibenzyldiaza‐18‐crown‐6 and palmetic acid was applied for transport of Pb2+ ions. The transport was capable of moving metal ions “uphill”. Thus, it was possible to follow the transfer of Pb(II) from the aqueous source phase to the organic layer and from the organic layer to the receiving phase. The effects of thiosulfate concentration in the receiving phase, palmetic acid and dibenzyldiaza‐18‐crown‐6 concentration in the organic phase on the efficiency of the transport system were examined. By using S2O32? ion as metal ion acceptor in the receiving phase, the amount of lead ion transport across the liquid membrane after 150 minutes is 96 ± 1.5%. The selectivity and efficiency of lead transport from aqueous solution containing Cu2+, Tl+, Ag+, Co2+, Ni2+, Mg2+, Zn2+, Hg2+, Cd2+, Ca2+ were investigated. In the presence of thiosulfate as a suitable masking agent in the source phase, the interfering effects of Ag+ and Cu2+ were diminished drastically.  相似文献   

11.
The metal‐organic complexes Co2(terpy)2(btec)·H2O 1 (terpy = 2,2′:6′,2″‐terpyridine, btec = 1,2,4,5‐benzenetetracarboxylate) was synthesized by hydrothermal synthesis method, using 1,2,4,5‐benzenetetracarbonitrile, terpy and CoAc2·4H2O. Single crystal X‐ray diffraction showed that each btec4– ligand links four CoII atoms and each CoII atom links to two btec4– ligands forming a 1D double‐chain structure. Furthermore, the chains pack together through short face–face π–π interactions forming a 3D supramolecular structure. Additionally, the magnetic measurements show antiferromagnetic interactions among metal ions for compound 1 .  相似文献   

12.
The self‐assembly reaction of zinc ions with tetracyanometalates in the presence of the tridentate chelated ligand 2,2′:6′,2′′‐terpyridine (terpy) yielded three cyanide‐bridged bimetallic compounds of general formula Zn(terpy)(H2O)M(CN)4 [M = Ni ( 1 ), Pd ( 2 ), Pt ( 3 )]. Compounds 1 – 3 were characterized by X‐ray diffraction (XRD), infrared spectroscopy (IR), and thermogravimetric (TG) analysis. Single‐crystal XRD analysis revealed that compounds 1 – 3 are isostructural and the structure consists of [Zn(terpy)(H2O)]2+ moieties and [M(CN)4]2– units linked alternatively to generate a one‐dimensional (1D) linear chain. The chains are further connected together through hydrogen bonding and π–π stacking interactions, forming a 3D supramolecular network. IR spectroscopic analysis indicated the presence of cyanide groups and terpy ligands in the structure. TG and powder XRD results showed that compounds 1 – 3 have higher thermal stabilities and exhibited irreversible for desorption/resorption of one coordinated water molecule.  相似文献   

13.
The synthesis of a new ligand (L1) containing two 1,4,7‐triazacyclononane ([9]aneN3) moieties linked by a 4,5‐dimethylenacridine unit is reported. The binding and fluorescence sensing properties toward Cu2+, Zn2+, Cd2+, and Pb2+ of L1 and receptor L2, composed of two [9]aneN3 macrocycles bridged by a 6,6′′‐dimethylen‐2,2′:6′,2′′‐terpyridine unit, have been studied by coupling potentiometric, UV/Vis absorption, and emission measurements in aqueous media. Both receptors can selectively detect Zn2+ thanks to fluorescence emission enhancement upon metal binding. The analysis of the binding and sensing properties of the Zn2+ complexes toward inorganic anions revealed that the dinuclear Zn2+ complex of L1 selectively binds and senses the triphosphate anion (TP), whereas the mononuclear Zn2+ complex of L2 displays selective recognition of diphosphate (DP). Binding of TP or DP induces emission quenching of the Zn2+ complexes with L1 and L2, respectively. These results are exploited to discuss the role played by pH, number of coordinated metal cations, and binding ability of the bridging units in metal and/or anion coordination and sensing.  相似文献   

14.
A supramolecular complex, [Au(C^N^C)(C≡CC6H4C≡C)Pt(terpy)]+, has been synthesized as a photocatalyst for water reduction. This compound consists of a cyclometalated alkyne‐gold(III) photosensitizer and a platinum(II) terpyridine complex bridged through a central phenylethynyl group.  相似文献   

15.
Sterically hindering bidentate chelates, such as 2,9‐diphenyl‐1,10‐phenanthroline, form entwined complexes with copper(I) and other tetrahedrally coordinated transition‐metal centres. To prepare octahedral complexes containing two entwined tridentate ligands and thus apply a strategy similar to that used for making catenanes with tetrahedral metal centres, the use of the classical terpy ligand (terpy=2,2′:6′,2′′‐terpyridine) appears to be attractive. In fact, 6,6′′‐diphenyl‐2,2′:6′,2′′‐terpyridine (dp‐terpy) is not appropriate due to strong “pinching” of the organic backbone by coordination to the metal and thus stable entwined complexes with this ligand cannot be obtained. Herein, we report the synthesis and coordination properties of a new family of tridentate ligands, the main features of which are their endocyclic nature and non‐sterically hindering character. The coordinating fragment consists of two 8′‐phenylisoquinolin‐3′‐yl groups attached at the 2 and 6 positions of a pyridine nucleus. Octahedral complexes containing two such entangled ligands around an octahedral metal centre, such as FeII, RuII or CoIII, are highly stable, with no steric congestion around the metal. By using functionalised ligands bearing terminal olefins, double ring‐closing metathesis leads to [2]catenanes in good yield with FeII or CoIII as the templating metal centre. The X‐ray crystallography structures of the FeII precursor and the FeII catenane are also reported. These show that although significant pinching of the ligand is observed in both FeII complexes, the system is very open and no steric constraints can be detected.  相似文献   

16.
In the title compound, [PtI(C15H11N3)][AuI2], the [PtI(terpy)]+ cations (terpy is 2,2′:6′,2′′‐terpyridine) stack in pairs about inversion centers through Pt...Pt interactions of 3.5279 (5) Å. The [AuI2] anions also exhibit pairwise stacking, with Au...I distances of 3.7713 (5) Å. The [PtI(terpy)]+ cations and [AuI2] anions aggregate forming infinite arrays of stacked ...({[PtI(terpy)]+...[PtI(terpy)]+}...{[AuI2]...[AuI2]})... units.  相似文献   

17.
Two large rings, 66‐ (m‐66 ) and 78‐membered ( m‐78 ) rings, each one incorporating two pairs of transition‐metal‐complexing units, have been prepared. The coordinating fragments are alternating bi‐ and tridentate chelating groups, namely, 2,9‐diphenyl‐1,10‐phenanthroline (dpp) and 2,2′,2′,6′′‐terpyridine (terpy) respectively. Both macrocycles form molecular figures‐of‐eight in the presence of FeII, affording a classical bis‐terpy complex as the central core. The larger m‐78 ring can accommodate a four‐coordinate CuI center with the formation of a {Cu(dpp)2}+ central complex and a highly twisted figure‐of‐eight backbone, whereas m‐66 is too small to coordinate CuI. Macrocycle m‐78 thus affords stable complexes with both FeII and CuI; the ligand around the metal changes from (terpy)2 to (dpp)2. This bimodal coordination situation allows for a large amplitude rearrangement of the organic backbone. When coordinated to preferentially octahedrally coordinated FeII or CuII, the height of the molecule along the coordinating axis of the tridentate terpy ligands is only about 11 Å, whereas the height of the molecule along the same vertical axis is several times as large for the tetrahedral CuI complex. Chemically or electrochemically driven contraction and extension motions along a defined axis make this figure‐of‐eight particularly promising as a new class of molecular machine prototype for use as a constitutive element in muscle‐like dynamic systems.  相似文献   

18.
The substitution kinetics of the complexes [Pt{4′‐(o‐CH3‐Ph)‐terpy} Cl]SbF6 (CH3PhPtCl(Sb)), [Pt{4′‐(o‐CH3‐Ph)‐terpy}Cl]CF3SO3 (CH3PhPtCl(CF)), [Pt(4′‐Ph‐terpy)Cl]SbF6 (PhPtCl), [Pt(terpy)Cl]Cl·2H2O (PtCl), [Pt{4′‐(o‐Cl‐Ph)‐terpy}Cl]SbF6 (ClPhPtCl), and [Pt{4′‐(o‐CF3‐Ph)‐terpy}Cl]SbF6 (CF3PhPtCl), where terpy is 2,2′:6′,2″‐terpyridine, with the nucleophiles thiourea (TU), N,N′‐dimethylthiourea (DMTU), and N,N,N′,N′‐tetramethylthiourea (TMTU) were investigated in methanol as a solvent. The substitution reactions of the chloride displacement from the metal complexes by the nucleophiles were investigated as a function of nucleophile concentration and temperature under pseudo‐first‐order conditions using the stopped‐flow technique. The reactions followed the simple rate law kobs = k2[Nu]. The results indicate that the introduction of substituents in the ortho position of the phenyl group on the ancillary ring of the terpy unit does influence the extent of π‐backbonding in the terpy ring. This controls the electrophilicity of the platinum center, which in turn controls the lability of the chloro‐leaving group. The strength of the electron‐donating or ‐withdrawing ability of the substituents correlates with the reactivity of the complexes. Electron‐donating substituents decrease the rate of substitution, whereas electron‐withdrawing substituents increase the rate of substitution. This was supported by DFT calculations at the B3LYP/LACVP+** level of theory, which showed that most of the electron density of the HOMO is concentrated on the phenyl ligand rather than on the metal center in the case of the strongest electron‐withdrawing substituent in CF3PhPtCl. The opposite was found to be true with the strongest electron‐donating substituent in CH3PhPtCl. Thiourea was found to be the best nucleophile with N,N,N′,N′‐tetramethylthiourea being the weakest due to steric effects. The temperature dependence studies support an associative mode of activation. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 808–818, 2008  相似文献   

19.
Complex formation between N,N,N′,N′‐tetrakis(2‐aminoethyl)ethane‐1,2‐diamine (penten) and the metal ions Mn2+, Co2+, Cu2+, Zn2+, Cd2+, Hg2+, Ag+, Pb2+, and Tl3+ (in 1.00M NaNO3 and 25°) was investigated by potentiometry and spectrophotometry. These are the first reported values of the stability constants for this ligand with Ag+, Pb2+, and Tl3+. The X‐ray crystal structure of [Tl(NO3)(penten)](NO3)2 was determined. In this structure, Tl3+ shows a coordination number of seven made up of the six N‐donors and one O‐atom of NO.  相似文献   

20.
A new ratiometric fluorescent sensor ( 1 ) for Cu2+ based on 4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene (BODIPY) with di(2‐picolyl)amine (DPA) as ion recognition subunit has been synthesized and investigated in this work. The binding abilities of 1 towards different metal ions such as alkali and alkaline earth metal ions (Na+, K+, Mg2+, Ca2+) and other metal ions ( Ba2+, Zn2+, Cd2+, Fe2+, Fe3+, Pb2+, Ni2+, Co2+, Hg2+, Ag+) have been examined by UV‐vis and fluorescence spectroscopies. 1 displays high selectivity for Cu2+ among all test metal ions and a ~10‐fold fluorescence enhancement in I582/I558 upon excitation at visible excitation wavelength. The binding mode of 1 and Cu2+ is a 1:1 stoichiometry determined via studies of Job plot, the nonlinear fitting of the fluorometric titration and ESI mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号