首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of lead‐free double perovskite nanocrystals (NCs) Cs2AgSb1?yBiyX6 (X: Br, Cl; 0≤y≤1) is synthesized. In particular, the Cs2AgSbBr6 NCs is a new double perovskite material that has not been reported for the bulk form. Mixed Ag–Sb/Bi NCs exhibit enhanced stability in colloidal solution compared to Ag–Bi or Ag–Sb NCs. Femtosecond transient absorption studies indicate the presence of two prominent fast trapping processes in the charge‐carrier relaxation. The two fast trapping processes are dominated by intrinsic self‐trapping (ca. 1–2 ps) arising from giant exciton–phonon coupling and surface‐defect trapping (ca. 50–100 ps). Slow hot‐carrier relaxation is observed at high pump fluence, and the possible mechanisms for the slow hot‐carrier relaxation are also discussed.  相似文献   

2.
A series of lead‐free double perovskite nanocrystals (NCs) Cs2AgSb1?yBiyX6 (X: Br, Cl; 0≤y≤1) is synthesized. In particular, the Cs2AgSbBr6 NCs is a new double perovskite material that has not been reported for the bulk form. Mixed Ag–Sb/Bi NCs exhibit enhanced stability in colloidal solution compared to Ag–Bi or Ag–Sb NCs. Femtosecond transient absorption studies indicate the presence of two prominent fast trapping processes in the charge‐carrier relaxation. The two fast trapping processes are dominated by intrinsic self‐trapping (ca. 1–2 ps) arising from giant exciton–phonon coupling and surface‐defect trapping (ca. 50–100 ps). Slow hot‐carrier relaxation is observed at high pump fluence, and the possible mechanisms for the slow hot‐carrier relaxation are also discussed.  相似文献   

3.
In the present article, we have revisited the electronic band gap nature of ZnOxS1?x (0 ≤ x ≤ 1) with the recently developed modified Becke and Johnson exchange potential and the calculated band gaps are found consistent with the experimental results. We expect that the band gap bowing parameter obtained in the present work will be close to the experimental one. As the optical properties of ZnOxS1?x (0 ≤ x ≤ 1) are very important, therefore different optical parameters like dielectric functions, refractive index and reflectivity are also calculated. The results are illustrated in terms of band structures, band gap energy as a function of oxygen composition, total and partial density of states. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
The Rare Earth Metal Polyselenides Gd8Se15, Tb8Se15?x, Dy8Se15?x, Ho8Se15?x, Er8Se15?x, and Y8Se15?x – Increasing Disorder in Defective Planar Selenium Layers Single crystals of the rare earth metal polyselenides Gd8Se15, Tb8Se15?x, Dy8Se15?x, Ho8Se15?x, Er8Se15?x, and Y8Se15?x (0 < x ≤ 0.3) have been prepared by chemical transport reactions (1120 K→ 970 K, 14 days, I2 as carrier) starting from pre‐annealed powders of nominal compositions between LnSe2 and LnSe1.9. The isostructural title compounds adopt a 3 × 4 × 2 superstructure of the ZrSSi type and can be described in space group Amm2 with lattice parameters of a = 12.161(1) Å, b = 16.212(2) Å and c = 16.631(2) Å (Gd8Se15), a = 12.094(2) Å, b = 16.123(2) Å and c = 16.550(2) Å (Tb8Se15?x), a = 12.036(2) Å, b = 16.060(2) Å and c = 16.475(2) Å (Dy8Se15?x), a = 11.993(2) Å, b = 15.999(2) Å and c = 16.471(2) Å (Ho8Se15?x), a = 11.908(2) Å, b = 15.921(2) Å and c = 16.428(2) Å (Er8Se15?x), and a = 12.045(2) Å, b = 16.072(3) Å and c = 16.626(3) Å (Y8Se15?x), respectively. The structure consists of puckered [LnSe] double slabs and planar Se layers alternating along [001]. The planar Se layers contain a disordered arrangement of dimers, Se2? and vacancies. All compounds are semiconducting and contain trivalent rare earth metals (Ln3+).  相似文献   

5.
The mixed silicide‐germanides Li12Si7–xGex, Na7LiSi8–zGez, and Li3NaSi6–vGev which could serve as potential precursors for Si1–xGex materials were synthesized and characterized by X‐ray diffraction methods. The full solid solution series Li12Si7–xGex (0 ≤ x ≤ 7) is easily accessible from the elements and features preferential occupation of the more negatively charged crystallographic tetrel positions by Ge, which is the more electronegative element. In case of Na7LiSi8–zGez a broad solid solution range of 1.3 ≤ x ≤ 8 is available but the ternary silicide Na7LiSi8 could not be obtained by the tested methods of synthesis. The solubility of Ge in Li3NaSi6–vGev is highly limited to a maximum of v ≈ 0.5, and again the formally more negatively charged tetrel positions are preferred by Ge. Additionally, the two crystallographic Li positions in Li12Si7 with unusually large displacement parameters can be partially substituted by Na in Li12–yNaySi7 with 0 ≤ y ≤ 0.6. The statistical mixing of Li and Na in this solid solution contrasts the typical ordering of Li and Na in most ternary tetrelides.  相似文献   

6.
A novel nitride, Sr2−yEuyB2−2xSi2+3xAl2−xN8+x (x≃ 0.12, y≃ 0.10) (distrontium europium diboron disilicon dialuminium octanitride), with the space group P2c, was synthesized from Sr3N2, EuN, Si3N4, AlN and BN under nitrogen gas pressure. The structure consists of a host framework with Sr/Eu atoms accommodated in the cavities. The host framework is constructed by the linkage of MN4 tetrahedra (M = Si, Al) and BN3 triangles, and contains substitutional disorder described by the alternative occupation of B2 or Si2N on the (0, 0, z) axis. The B2:Si2N ratio contained in an entire crystal is about 9:1.  相似文献   

7.
The structures, thermal and physical properties of ion conducting polymorphic Ag5Te2Cl1?xBrx and Ag5Te2?ySyCl have been investigated. A maximum substitution degree of x = 0.65 and y = 0.3 was derived from X‐ray powder diffraction. Mixtures of silver halides, silver chalcogenides and Ag3TeBr were observed for higher substitution degrees. Both silver chalcogenide halide systems show a Vegard type behaviour. Single crystal structure determinations of selected materials were performed at different temperatures to analyse the silver distribution in the tetragonal high temperature α‐ and the monoclinic room temperature β‐phases. After non‐harmonic refinement of the silver positions detailed joint probability density function analysis (jpdf) and determination of one particle potentials (opp) were carried out to investigate the diffusion pathways and bottlenecks of ion transport for those materials. A preferred anisotropic ion transport along the diffusion pathways for the α‐ and 1D zig‐zag diffusion pathways for the β‐phases were found. αβ and βγ phase transitions were determined by DSC and DTA methods and conductivities were measured using temperature dependent impedance spectroscopy. The substitution of tellurium by sulphur lowered the αβ phase transition from 334 K (Ag5Te2Cl) to 270 K (Ag5Te1.8S0.2Cl) while the opposite trend was found for the Ag5Te2Cl1?xBrx phases. The αβ phase transition of Ag5Te2Cl0.35Br0.65 at 343 K represents the highest transition observed for the silver chalcogenide halides under discussion. Total conductivities of approx. 1 Ω?1 cm?1 (α‐Ag5Te2Cl0.5Br0.5) and 0.24 Ω?1 cm?1 (α‐Ag5Te1.8S0.2Cl) at 473 K were found being slightly higher (Br) and lower (S) than the conductivity observed for α‐Ag5Te2Cl. A conductivity jump of more than two orders of magnitude, related to the αβ phase transitions, within the temperature range from 270 to 343 K is adjustable by simple variation of the composition and is therefore an extraordinary feature of these materials. The total conductivity is linearly correlated to the volume of the anion substructure and can be varied within more than half an order of magnitude.  相似文献   

8.
The crystal structures of six members of the homologous series with general formula [BiQX]2[AgxBi1?xQ2?2xX2x?1]N+1 (Q = S, Se; X = Cl, Br; 1/2 ≤ x ≤ 1) and N = 4, 5, or 7 were determined by single‐crystal X‐ray diffraction. The series are characterized by the parameters N and x and are denoted (N, x)P. Ag3Bi4S6Cl3 (x = 0.60) (I) , Ag3.5Bi3.5S5Br4 (x = 0.70) (II) and Ag3.65Bi3.35Se4.70Br4.30 (x = 0.73) (III) belong to (4, x)P series Ag5xBi7?5xQ12?10xX10x?3 and adopt the AgBi6S9 structure type. The (5, x)P compound Ag3.66Bi4.34S6.68Br3.32 (IV) , which corresponds to x = 0.61 in Ag6xBi8?6xS14?12xBr12x?4, crystallizes isostructurally to AgBi3S5. The compounds Ag4.56Bi5.44Se8.88Br3.12 (x = 0.57) (V) and Ag5.14Bi4.86S7.76Br4.24 (x = 0.64) (VI) , which are members of (7, x)P series Ag8xBi10?8xQ18?16xBr16x?6, adopt the Ag3Bi7S12 structure type. In the monoclinic crystal structures (space group C2/m) two kinds of layered modules alternate along [001]. Modules of type A uniformly consist of paired rods of face‐sharing monocapped trigonal prisms around Bi atoms with octahedra around mixed occupied metal positions (M = Ag/Bi) between them. Modules of type B are composed of [MZ6] octahedra, which are arranged in NaCl‐type fragments of thickness N. All structures exhibit Ag/Bi disorder in octahedrally coordinated metal positions as well as Q/X mixed occupation of some anion positions. Corresponding to their black color, all compounds are narrow‐gap semiconductors (Eg = 0.35 eV for (II) ). General characteristics of the entire class of (N, x)P compounds are gathered in a catalogue.  相似文献   

9.
A series of the solid‐solution phosphors Lu3?x?yMnxAl5?xSixO12:yCe3+ is synthesized by solid‐state reaction. The obtained phosphors possess the garnet structure and exhibit similar excitation properties as the phosphor Lu3Al5O12:Ce3+, but with an effectively improved red component in the emission spectrum. This can be attributed to the energy transfer from Ce3+ to Mn2+. Our investigation reveals that electric dipole–quadrupole interactions dominate the energy‐transfer mechanism and that the critical distance determined by the spectral overlap method is about 9.21 Å. The color‐tunable emissions of the Lu3?x?yMnxAl5?xSixO12:yCe3+ phosphor as a function of Mn3Al2Si3O12 content are realized by continuously shifting the chromaticity coordinates from (0.354, 0.570) to (0.462, 0.494). They indicate that the obtained material may have potential application as a blue radiation‐converting phosphor for white LEDs with high‐quality white light.  相似文献   

10.
11.
Ligands play an important role in determining the atomic arrangement within the metal nanoclusters. Here, we report a new nanocluster [Au23?xAgx(S‐Adm)15] protected by bulky adamantanethiol ligands which was obtained through a one‐pot synthesis. The total structure of [Au23?xAgx(S‐Adm)15] comprises an Au13?xAgx icosahedral core, three Au3(SR)4 units, and one AgS3 staple motif in contrast to the 15‐atom bipyramidal core previously seen in [Au23?xAgx(SR)16]. UV/Vis spectroscopy indicates that the HOMO–LUMO gap of [Au23?xAgx(S‐Adm)15] is 1.5 eV. DFT calculations reveal that [Au19Ag4(S‐Adm)15] is the most stable structure among all structural possibilities. Benefitting from Ag doping, [Au23?xAgx(S‐Adm)15] exhibits drastically improved photocatalytic activity for the degradation of rhodamine B (RhB) and phenol under visible‐light irradiation compared to Au23 nanoclusters.  相似文献   

12.
Novel ternary phases, (Pd1?xZnx)18(Zn1?yAly)86?δ (0≤x≤0.162, 0.056≤y≤0.088, 0≤δ≤4), which adopt a superstructure of the γ‐brass type (called γ′‐brass), have been synthesized from the elements at 1120 K. Single‐crystal X‐ray structural analysis reveals a phase width (F$\bar 4$ 3m, a=18.0700(3)–18.1600(2) Å, Pearson symbols cF400–cF416), which is associated with structural disorder based on both vacancies as well as mixed site occupancies. These structures are constructed of four independent 26‐atom γ‐clusters per primitive unit cells and centered at the four special positions A (0, 0, 0), B (1/4, 1/4, 1/4), C (1/2, 1/2, 1/2) and D (3/4, 3/4, 3/4). Two of these, centered at B and C , are completely ordered Pd4Zn22 clusters, whereas the other two, centered at A and D , contain all structural disorder in the system. According to our single‐crystal X‐ray results, Al substitutions are restricted to the A ‐ and D ‐centered clusters. Moreover, the outer tetrahedron (OT) site of the 26‐atom cluster at D is completely vacant at the Al‐rich boundary of these phases. Electronic structure calculations, using the tight‐binding linear muffin‐tin orbital atomic‐spheres approximation (TB‐LMTO‐ASA) method, on models of these new, ternary γ′‐brass phases indicate that the observed chemical compositions and atomic distributions lead to the presence of a pseudogap at the Fermi level in the electronic density of states curves, which is consistent with the Hume‐Rothery interpretation of γ‐brasses, in general.  相似文献   

13.
X-Ray and Vibrational Studies of Sulvanite Mixed Cystals Cu3Nb(SxSe1?x)4, Cu3Nb(SexTe1?x)4, Cu3Ta(SxSe1?x)4 and Cu3Ta(SexTe1?x)4 Solid solutions Cu3Nb(SxSe1?x)4, Cu3Nb(SexTe1?x)4, Cu3Ta(SxSe1?x)4 and Cu3Ta(SexTe1?x)4 with sulvanite structure have been prepared in the range 0 ≤ x ≤ 1. The lattice constants in all systems obey the Vegard rule. Infrared and Raman spectra have been measured. The spectra of the compounds with mixed anion sublattices show additional peaks, compared to those of the end members, because besides the polyhedra MX4 and MY4 also groups MX3Y, MX2Y2, and MXY3 are present, and all groups are able to oscillate independently. By comparison of the peak intensities and the statistical frequency of the groups according to the composition, the additional valence vibrations could be attributed to the groups.  相似文献   

14.
Composition engineering is an important approach for modulating the physical properties of alloyed semiconductors. In this work, ternary CuSxSe1?x nanoplates over the entire composition range of 0≤x≤1 have been controllably synthesized by means of a simple aqueous solution method at low temperature (90 °C). Reaction of Cu2+ cations with polysulfide/‐selenide ((SnSem)2?) anions rather than independent Sn2? and Sem2? anions is responsible for the low‐temperature and rapid synthesis of CuSxSe1?x alloys, and leads to higher S/Se ratios in the alloys than that in reactants owing to different dissociation energies of the Se?Se and the S?S bonds. The lattice parameters ‘a’ and ‘c’ of the hexagonal CuSxSe1?x alloys decrease linearly, whereas the direct bandgaps increase quadratically along with the S content. Direct bandgaps of the alloys can be tuned over a wide range from 1.64 to 2.19 eV. Raman peaks of the S?Se stretching mode are observed, thus further confirming formation of the alloyed CuSxSe1?x phase.  相似文献   

15.
Photoluminescence in the System A2II B1/4IIGd1/2?xEux1/4WO6 ? A8IIBIIGd2?xEuxW4O24 (AII, BII = Sr, Ba) The emission and excitation spectra for the series Sr8SrGd2?xEux□W4O24 (HT- and LT-modifications) and Sr9?yBayEu2□W4O24 are reported and discussed. HT- and LT-Sr8SrEu2□W4O24 show an intense red emission, no concentration quenching is present.  相似文献   

16.
A series of EuMgxGa4?x compounds were synthesized using high temperature, solid‐state methods and characterized by both powder and single crystal X‐ray diffraction. All compounds crystallize in the tetragonal BaAl4‐type structure (space group I4/mmm, Z = 2, Pearson symbol tI10) with full occupancy of Ga at the apical atom (4e) site and mixed‐occupancy of Mg and Ga at the basal atom (4d) site. Six compositions were analyzed by single crystal X‐ray diffraction: EuMg0.21(1)Ga3.79(1), EuMg0.91(1)Ga3.09(1), EuMg1.22(1)Ga2.78(1), EuMg1.78(1)Ga2.22(1), EuMg1.84(1)Ga2.16(1), and EuMg1.94(1)Ga2.06(1). As the larger Mg atoms increasingly replace Ga atoms at the basal site in EuMgxGa4?x, the a‐axis lengths at first decrease and then increase, while the c‐axis lengths increase monotonically along the series. The phase width of the BaAl4‐type EuMgxGa4?x series is identified to be 0 ≤ x ≤ 1.94(1), a range which corresponds to 12.06(1)‐14 valence electrons per formula unit, and can be understood by their electronic structures using density of states (DOS) curves calculated by tight‐binding calculations. Mg substitution for Ga at the basal site is consistent with the site preferences for mixed metals on the three‐dimensional framework of the BaAl4‐structure based on both electronegativities and sizes, and provides the rationale for the unusual behavior in lattice parameters. The observed site preference was also rationalized by total electronic energies calculated for two different coloring schemes.  相似文献   

17.
A systematic approach to the formation of endohedrally filled atom clusters by a high‐temperature route instead of the more frequent multistep syntheses in solution is presented. Zintl phases Na12Ni1?xSn17 and K13?xCo1?xSn17, containing endohedrally filled intermetalloid clusters [Ni@Sn9]4? or [Co@Sn9]5? beside [Sn4]4?, are obtained from high‐temperature reactions. The arrangement of [Ni@Sn9]4? or [Co@Sn9]5? and [Sn4]4? clusters, which are present in the ratio 1:2, can be regarded as a hierarchical replacement variant of the hexagonal Laves phase MgZn2 on the Mg and Zn positions, respectively. The alkali‐metal positions are considered for the first time in the hierarchical relationship, which leads to a comprehensive topological parallel and a better understanding of the composition of these compounds. The positions of the alkali‐metal atoms in the title compounds are related to the known inclusion of hydrogen atoms in the voids of Laves phases. The inclusion of Co atoms in the {Sn9} cages correlates strongly with the number of K vacancies in K13?xCo1?xSn17 and K5?xCo1?xSn9, and consequently, all compounds correspond to diamagnetic valence compounds. Owing to their diamagnetism, K13?xCo1?xSn17, and K5?xCo1?xSn9, as well as the d‐block metal free binary compounds K12Sn17 and K4Sn9, were characterized for the first time by 119Sn solid‐state NMR spectroscopy.  相似文献   

18.
A porous perovskite BaCoxFeyZr0.9?x?yPd0.1O3?δ (BCFZ‐Pd) coating was deposited onto the outer surface of a BaCoxFeyZr1?x?yO3?δ (BCFZ) perovskite hollow‐fiber membrane. The surface morphology of the modified BCFZ fiber was characterized by scanning electron microscopy (SEM), indicating the formation of a BCFZ‐Pd porous layer on the outer surface of a dense BCFZ hollow‐fiber membrane. The oxygen permeation flux of the BCFZ membrane with a BCFZ‐Pd porous layer increased 3.5 times more than that of the blank BCFZ membrane when feeding reactive CH4 onto the permeation side of the membrane. The blank BCFZ membrane and surface‐modified BCFZ membrane were used as reactors to shift the equilibrium of thermal water dissociation for hydrogen production because they allow the selective removal of the produced oxygen from the water dissociation system. It was found that the hydrogen production rate increased from 0.7 to 2.1 mL H2 min?1 cm?2 at 950 °C after depositing a BCFZ‐Pd porous layer onto the BCFZ membrane.  相似文献   

19.
The rod‐shaped Au25 nanocluster possesses a low photoluminescence quantum yield (QY=0.1 %) and hence is not of practical use in bioimaging and related applications. Herein, we show that substituting silver atoms for gold in the 25‐atom matrix can drastically enhance the photoluminescence. The obtained AgxAu25?x (x=1–13) nanoclusters exhibit high quantum yield (QY=40.1 %), which is in striking contrast with the normally weakly luminescent AgxAu25?x species (x=1–12, QY=0.21 %). X‐ray crystallography further determines the substitution sites of Ag atoms in the AgxAu25?x cluster through partial occupancy analysis, which provides further insight into the mechanism of photoluminescence enhancement.  相似文献   

20.
A high quantum yield (QY) of photoluminescence (PL) in nanomaterials is necessary for a wide range of applications. Unfortunately, the weak PL and moderate stability of atomically precise silver nanoclusters (NCs) suppress their utility. Herein, we accomplished a ≥26‐fold PL QY enhancement of the Ag29(BDT)12(TPP)4 cluster (BDT: 1,3‐benzenedithiol; TPP: triphenylphosphine) by doping with a discrete number of Au atoms, producing Ag29?xAux(BDT)12(TPP)4, x=1–5. The Au‐doped clusters exhibit an enhanced stability and an intense red emission around 660 nm. Single‐crystal XRD, mass spectrometry, optical, and NMR spectroscopy shed light on the PL enhancement mechanism and the probable locations of the Au dopants within the cluster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号