首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Dimers of 2‐substituted N,N′‐dimethylbenzimidazoline radicals, (2‐Y‐DMBI)2 (Y=cyclohexyl (Cyc), ferrocenyl (Fc), ruthenocenyl (Rc)), have recently been reported as n‐dopants for organic semiconductors. Here their structural and energetic characteristics are reported, along with the mechanisms by which they react with acceptors, A (PCBM, TIPS‐pentacene), in solution. X‐ray data and DFT calculations both indicate a longer C?C bond for (2‐Cyc‐DMBI)2 than (2‐Fc‐DMBI)2, yet DFT and ESR data show that the latter dissociates more readily due to stabilization of the radical by Fc. Depending on the energetics of dimer (D2) dissociation and of D2‐to‐A electron transfer, D2 reacts with A to form D+ and A? by either of two mechanisms, differing in whether the first step is endergonic dissociation or endergonic electron transfer. However, the D+/0.5 D2 redox potentials—the effective reducing strengths of the dimers—vary little within the series (ca. ?1.9 V vs. FeCp2+/0) (Cp=cyclopentadienyl) due to cancelation of trends in the D+/0 potential and D2 dissociation energy. The implications of these findings for use of these dimers as n‐dopants, and for future dopant design, are discussed.  相似文献   

2.
Several 19‐electron sandwich compounds are known to exist as “2×18‐electron” dimers. Recently it has been shown that, despite their air stability in the solid state, some of these dimers act as powerful reductants when co‐deposited from either the gas phase or from solution and that this behavior can be useful in n‐doping materials for organic electronics, including compounds with moderate electron affinities, such as 6,13‐bis[tri(isopropyl)silylethynyl]pentacene ( 3 ). This paper addresses the mechanisms by which the dimers of 1,2,3,4,5‐pentamethylrhodocene ( 1 b2 ), (pentamethylcyclopentadienyl)(1,3,5‐trialkylbenzene)ruthenium (alkyl=Me, 2 a2 ; alkyl=Et, 2 b2 ), and (pentamethylcyclopentadienyl)(benzene)iron ( 2 c2 ) react with 3 in solution. Vis/NIR and NMR spectroscopy, and X‐ray crystallography indicate that the products of these solution reactions are 3 .? salts of the monomeric sandwich cations. Vis/NIR kinetic studies for the Group 8 dimers are consistent with a mechanism whereby an endergonic electron transfer from the dimer to 3 is followed by rapid cleavage of the dimer cation. NMR crossover experiments with partially deuterated derivatives suggest that the C? C bond in the 1 b2 dimer is much more readily broken than that in 2 a2 ; consistent with this observation, Vis/NIR kinetic measurements suggest that the solution reduction of 3 by 1 b2 can occur by both the mechanism established for the Group 8 species and by a mechanism in which an endergonic dissociation of the dimer is followed by rapid electron transfer from monomeric 1 b to 3 .  相似文献   

3.
Potential host systems based on a rigid 1,8‐diethynylanthracendiyl backbone were synthesised by treatment of 1,8‐diethynylanthracene with the Group 13 trialkyls AlMe3, GaMe3, InMe3, AlEt3 and GaEt3. The resulting products were characterised by IR and multinuclear NMR spectroscopy, elemental analyses and determination of their crystal structures by X‐ray diffraction. The compounds are dimeric in the solid state and comprise two M2C2 heterocycles. Depending on the steric demand of the alkyl substituents at the metal atom, different types of binding modes were observed, which can be classified to lie between the ideals of side‐on coordination with almost linear primary M? C?C units and the 3c–2e coordination with symmetrically bridging alkynyl units in M‐C‐M bonds. As a solution in THF the dimers are broken into monomers and some are found to undergo ligand scrambling reactions.  相似文献   

4.
We present a systematic density functional theory (DFT) study of the structure and catalytic activity of group 10 (Ni, Pd, Pt) and group 11 (Cu, Ag, Au) coinage metal nanoribbons. These infinite, periodic, quasi‐one‐dimensional structures are conceptually important as intermediates between small metal clusters and close‐packed metal surfaces, and have been shown experimentally to be practical catalysts. We find that nanoribbons have significantly higher predicted H2 dissociation activity than close‐packed metal surfaces consistent with their lower coordination numbers. Computed periodic trends are reasonable, with late transition states and low barriers for H2 dissociation over late group 10 nanoribbons, suggesting their promise as practical catalysts. These trends are consistent with the isolated nanoribbons' computed molecular electrostatic potentials. Calculations also predict nearly linear Brønsted–Evans–Polanyi relationships between the nanoribbons' H2 dissociation energies and dissociation barriers. We also test new meta‐generalized gradient approximation (GGA) and hybrid DFT approximations for H2 dissociation over these nanoribbons. These new functionals increase the (generally underestimated) dissociation barriers predicted by standard GGAs, motivating their continued application in surface chemistry. © 2015 Wiley Periodicals, Inc.  相似文献   

5.
Trends in reactivity of β‐chloride and β‐hydride elimination reactions involving Group 10 transition‐metal complexes have been computationally explored and analyzed in detail by DFT. These reactions do not require the initial formation of a vacant coordination site; they proceed concertedly without a prior ligand‐dissociation step. Whereas β‐chloride elimination is associated with relatively moderate activation barriers, the high barriers calculated for analogous β‐hydride eliminations suggest that the latter process is unfeasible for this type of compounds. This differential behavior is analyzed within the activation strain model, which provides quantitative insight into the physical factors controlling these β‐elimination reactions. The effects of the nature of the Group 10 transition metal (Ni, Pd, Pt), as well as the substituents attached to the β‐eliminating fragment (R2C?CR2X; R, X=H, Cl) on the transformation have also been considered and are rationalized herein.  相似文献   

6.
Eight kinds of density functionals named B3LYP, PBE1PBE, B1B95, BLYP, BP86, G96PW91, mPWPW91, and SVWN along with two different valence basis sets (LANL2DZ and CEP‐121g) are employed to study the transition‐metal dimers for the elements of group VIII. By comparing the equilibrium bond distances, vibrational frequencies, and dissociation energies of the ground state of these dimers with the available experimental values and theoretical data, we show that the “pure” DFT methods (G96PW91, BLYP, and BP86) with great‐gradient approximation always give better results relative to the hybrid HF/DFT schemes (B3LYP, PBE1PBE, and B1B95). The striking case found by us is that the G96PW91 functional, which is not tested in previous systemic studies, always predicts the dissociation energy to be well. The Ru2 and Os2 dimers are sensitive to not only the functionals employed but also the valence basis sets adopted. The natural bond orbital population is analyzed, and the molecular orbitals of the unpaired electrons are determined. Furthermore, our results indicate that the s and d orbitals of these dimers always hybridize with each other except for Rh2 and Pt2 molecules. And by analyzing the electron configuration of the bonding atom, the dissociation limit of the ground state is obtained. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

7.
The on‐surface polymerization of 1,3,6,8‐tetrabromopyrene (Br4Py) on Cu(111) and Au(111) surfaces under ultrahigh vacuum conditions was investigated by a combination of scanning tunneling microscopy (STM), X‐ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations. Deposition of Br4Py on Cu(111) held at 300 K resulted in a spontaneous debromination reaction, generating the formation of a branched coordination polymer network stabilized by C?Cu?C bonds. After annealing at 473 K, the C?Cu?C bonds were converted to covalent C?C bonds, leading to the formation of a covalently linked molecular network of short oligomers. In contrast, highly ordered self‐assembled two‐dimensional (2D) patterns stabilized by both Br?Br halogen and Br?H hydrogen bonds were observed upon deposition of Br4Py on Au(111) held at 300 K. Subsequent annealing of the sample at 473 K led to a dissociation of the C?Br bonds and the formation of disordered metal‐coordinated molecular networks. Further annealing at 573 K resulted in the formation of covalently linked disordered networks. Importantly, we found that the chosen substrate not only plays an important role as catalyst for the Ullmann reaction, but also influences the formation of different types of intermolecular bonds and thus, determines the final polymer network morphology. DFT calculations further support our experimental findings obtained by STM and XPS and add complementary information on the reaction pathway of Br4Py on the different substrates.  相似文献   

8.
The core‐electron binding energies of six isomers of C3H6O2 and four isomers of C3H5NO were calculated by a DFT/uGTS/scaled‐pVTZ approach. An average absolute deviation from experiment of 0.15 eV was found for 14 C, N, and O 1s energies. The results confirm the distinctive nature of the X‐ray photoelectron spectra (XPS) of isomers and support the use of electron spectroscopy complemented by accurate theoretical predictions as a tool for chemical analysis. © 1999 John Wiley & Sons, Inc. Int J Quant Chem 76: 44–50, 2000  相似文献   

9.
A density‐functional study of indole–pyrrole heterodimer potential energy hypersurface (PES) was performed. Eight stationary points were located on the B3LYP/6‐31++G(d,p) PES, three of which correspond to real minima, all of them being characterized with an N? H … π type hydrogen bonding. In two of these minima (the local ones), pyrrole subunit acts as a hydrogen bond proton donor, while the global minimum corresponds to indole–H … π(‐pyrrole) arrangement. Besides the interaction and dissociation energies corrected for BSSE and the monomer relaxation energies and the relevant structural parameters, anharmonic N? H and N? H … π vibrational frequencies were calculated for various N? H oscillators involved in this interaction from the 1‐D DFT vibrational potentials. On the basis of anharmonic vibrational frequency analysis, it was concluded that the two types of N? H … π hydrogen bonded dimers (indole vs. pyrrole being a proton donor) should be distinguishable with spectroscopic methods. Various contributions to the overall anharmonic frequency shifts upon hydrogen bonding were calculated and discussed as well. The charge field perturbation (CFP) technique was employed to study the electrostatic + polarization influence of the proton accepting unit on the N? H(… π) vibrational potential. The second‐order perturbation theory analysis (SOPT) of the Fock matrix (i.e., its Kohn–Sham analog) within the natural bond orbital (NBO) basis, as well as various NBO deletion analyses revealed an essentially one‐directional charge transfer (CT) of a π(C? C) → σ*(N? H) type in the case of all three minima. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003  相似文献   

10.
Herein we report the discovery that two bottleable, neutral, base‐stabilized diborane(5) compounds are able to bind strongly to a number of copper(I) complexes exclusively through their B?B bond. The resulting complexes represent the first known complexes containing unsupported, neutral σB?B diborane ligands. Single‐crystal X‐ray analyses of these complexes show that the X?Cu moiety (X=Cl, OTf, C6F5) lies opposite the bridging hydrogen atom of the diborane and is near perpendicular to the B?B bond, interacting almost equally with both boron atoms and causing a B?B bond elongation. DFT studies show that σ donation from and π backdonation to the pseudo‐π‐like B?B bond account for their formation. Astoundingly, these copper σB?B complexes are inert to ligand exchange with pyridine under either heating or photoirradiation.  相似文献   

11.
Seven kinds of lanthanocene complexes were prepared by the reaction of tridentate Schiff base { N-(2-methoxyphenyI)sali-cylideneamine) with tris(cyclopentadienyl)lanthanide tetrahy-drofuranate or bis( cyclopentadienyl) lanthanide chloride te-trahydrofuranate in THF.All the complexes were characterized by MS,EA and IR respectively.The structure of {Cp2LnC14H13NO2) Ln=Sm,Dy,Y,Er} (1-4) was further confirmed by X-ray determination of Cp2Sm(C14H13NO2) (1) which indicates that the complex is monomeric in which central metal is coordinatively saturated by two cyclopentadienyl rings,two oxygens and one nitrogen of the ligand.The i-somerization of 1,5-hexadiene explains that complexes (1-4) isomerize this monomer into a mixture of 1,4-hexadiene,2,4-hexadiene,1,3-hexadiene,methylenecydopentane and methyl -cydopentene.Similarly complexes {CpLn(Cl)C14 H13NO2) (THF) (Ln=Sm,Dy,Y,Er)} (5-7) polymerize methyl-methacrylate (MMA.) to give polyMMA (PMMA) in 51.8% yield and high molecular weight (274×103),which shows nar  相似文献   

12.
X‐ray fluorescence measurements for O‐containing [polyethylene oxide, polyvinyl alcohol, polyvinyl methyl ether], CO‐containing [polyvinyl methyl ketone, polyethylene terephthalate], N‐containing [poly‐4‐vinylpyridine (P4VP), polyaniline oligomer (PAO)], and S‐containing [polyphenylene sulfide] substances are presented. Carbon Kα X‐ray emission spectra (XES) and X‐ray photoelectron spectra (XPS) are compared with our DFT calculations performed with the Amsterdam density functional (ADF) program. The combined analysis of valence XPS and carbon Kα XES allows us to determine the individual contributions from pσ‐ and pπ‐bonding molecular orbitals of the polymers. The ΔSCF calculations yield the accurate C1s core‐electron binding energies (CEBEs) for all carbon sites of the organic compound. We calculate all CEBEs of the model molecules using the ΔE KS approach. Our simulated C1s photoelectron and C Kα emission spectra are in good agreement with our measurements. We also obtain WD (work function and the other energies) values for the polymers and PAO from the difference between calculated (gas‐phase) and measured (solid) CEBE values. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 162–172, 2007  相似文献   

13.
Carbon‐atom extrusion from the ipso‐position of a halobenzene ring (C6H5X; X=F, Cl, Br, I) and its coupling with a methylene ligand to produce acetylene is not confined to [LaCH2]+; also, the third‐row transition‐metal complexes [MCH2]+, M=Hf, Ta, W, Re, and Os, bring about this unusual transformation. However, substrates with substituents X=CN, NO2, OCH3, and CF3 are either not reactive at all or give rise to different products when reacted with [LaCH2]+. In the thermal gas‐phase processes of atomic Ln+ with C7H7Cl substrates, only those lanthanides with a promotion energy small enough to attain a 4fn5d16s1 configuration are reactive and form both [LnCl]+ and [LnC5H5Cl]+. Branching ratios and the reaction efficiencies of the various processes seem to correlate with molecular properties, like the bond‐dissociation energies of the C?X or M+?X bonds or the promotion energies of lanthanides.  相似文献   

14.
The UV spectra of Group 6 metal carbene complexes bearing a CpM(CO)3 (Cp=cyclopentadienyl) moiety bonded to the carbene carbon atom exhibit a redshift of the absorption maxima at higher wavelengths with respect to the parent monometallic complexes. This redshift is partly due to a higher occupation on the pz atomic orbital of the carbene carbon atom. Time‐dependent DFT calculations accurately assign this band to a metal‐to‐ligand charge‐transfer transition, thus showing that the presence of a second metal center does not affect the nature of the transition. However, the photochemical reactivity of Group 6 metal carbene complexes bearing a CpM(CO)3 moiety strongly depends on the nature of this metal fragment. A new photoslippage reaction leading to fulvenes occurs when Mn‐derived products 11 a , 11 b , and 12 a are irradiated (both Cr and W derivatives), whereas Re‐derived product 11 c behaves like standard Fischer complexes and yields the usual photocarbonylation products. A new photoreduction process occurring in the metallacyclopropanone intermediate is also observed for these complexes. Both computational and deuteration experiments support this unprecedented photoslippage process. The key to this differential photoreactivity seems to be the M–Cp back‐donation, which hampers the slippage process for Re derivatives and favors the carbonylation reaction.  相似文献   

15.
Weakly bound linear and bent dimers, FH—X (where X = CO, OC, CNH, NCH, N2O and ON2), are investigated using the DFT B3LYP and ab initio MP2 methods with the same basis sets (6–311++G(3df,2pd)). The strengths of the H—C or H—N H‐bonds in dimers FH—CO, FH—CNH, and FH—N2O are compared with those of the H—O or H—N H‐bonds in dimers FH—OC, FH—NCH, and FH—ON2. The results obtained for the H‐bond distances, the elongation effect of the HF bond, the red shift of the HF stretching frequency, and the energy difference between the dimer and the charge transfer reveal that the H‐bonds of the first group of dimers are stronger than those of the second. The Gibbs energies calculated for the six dimer formations indicate that the weakly bound dimers are unstable at room temperature (T = 298 K) (FH—X's → FH + X's, ΔG < 0).  相似文献   

16.
NHC adducts of the stannylene Trip2Sn (Trip=2,4,6‐triisopropylphenyl) were reacted with zero‐valent Ni, Pd, and Pt precursor complexes to cleanly yield the respective metal complexes featuring a three‐membered ring moiety Sn‐Sn‐M along with carbene transfer onto the metal and complete substitution of the starting ligands. Thus the easily accessible NHC adducts to stannylenes are shown to be valuable precursors for transition‐metal complexes with an unexpected Sn? Sn bond. The complexes have been studied by X‐ray diffraction and NMR spectroscopy as well as DFT calculations. The compounds featuring the structural motif of a distannametallacycle comprised of a [(NHC)2M0] fragment and Sn2Trip4 represent rare higher congeners of the well‐known olefin complexes. DFT calculations indicate the presence of a π‐type Sn–Sn interaction in these first examples for acyclic distannenes symmetrically coordinating to a zero‐valent transition metal.  相似文献   

17.
In the study, the X-H (X=CH2, NH, O) bond dissociation energies (BDE) of para-substituted azulene (Y-C10H8X-H) were predicted theoretically for the first time using Density Functronal Theory (DFT) methods at UB3LYP/6-311 + +g(2df,2p)//UB3LYP/6-31 +g(d) level. It was found that the substituents exerted similar effects on the X-H BDE of azulene as those on benzene, except for 6-substituted 2-methylazulene. Owing to the substituent-dipole interaction, the reaction constants (ρ^+) of 2- and 6-Y-CIoHsX-H (X=NH and O only) varied violently. The origin of the substituent effects on the X-H BDE of azulene was found, by both GE/RE and SIE theory, to be directly associated with variation of the radical effects, although the ground effects also played a modest role in determining the net. substituent effects.  相似文献   

18.
A density functional theory (DFT) study of carbon? hydrogen versus carbon? heteroatom bond activation is presented. Heteroatom groups (X) investigated include X = F, Cl, OH, SH, NH2, PH2. The activating model complex is a prototypical d0 zirconium‐imide. While C? X activation has a thermodynamic advantage over C? H activation, the former has been found to have a kinetic advantage. Implications for catalytic hydrocarbon functionalization and phosphine–ligand degradation are discussed. The present results for a high‐valent metal complex are compared/contrasted with low‐valent bond activating complexes. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

19.
In this work, we report a novel dinuclear Sn (II) complex, [Sn2(Hpdm)2(H2O)6] 2H2O 2Cl ( 1 ) (H2pdm = pyridine‐2,6‐dimethanol), which has been crystallized out and characterized by elemental analysis, FTIR, 1H and 13C NMR, single crystal X‐ray studies and Density Functional Theory (DFT) analysis. X‐ray structure of 1 has confirmed it to be a dinuclear alkoxo‐bridged Sn (II) species where each metal adopts a seven coordinate distorted pentagonal bipyramidal (pbp) geometry. This is the first hepta‐coordinated Sn (II) complex ever isolated apart from already reported stannylenes. Spin density plots from DFT support the +2 oxidation state of each tin metal. Hirshfeld surface analysis reveals the presence of various H‐bonding interactions in the molecule and molecular docking results along with DFT confirm higher binding affinity of the present complex towards DNA. Moreover, the complex exhibits promising anticancer activities against HeLa and A549 cancer cell lines.  相似文献   

20.
The new dinuclear nickel–ruthenium complexes [Ni(xbsms)RuCp(L)][PF6] (H2xbsms=1,2‐bis(4‐mercapto‐3,3‐dimethyl‐2‐thiabutyl)benzene; Cp?=cyclopentadienyl; L=DMSO, CO, PPh3, and PCy3) are reported and are bioinspired mimics of NiFe hydrogenases. These compounds were characterized by X‐ray diffraction techniques and display novel structural motifs. Interestingly, [Ni(xbsms)RuCpCO][PF6] is stereochemically nonrigid in solution and an isomerization mechanism was derived with the help of density functional theory (DFT) calculations. Because of an increased electron density on the metal centers [Eur. J. Inorg. Chem. 2007 , 18 , 2613–2626] with respect to the previously described [Ni(xbsms)Ru(CO)2Cl2] and [Ni(xbsms)Ru(p‐cymene)Cl]+ complexes, [Ni(xbsms)RuCp(dmso)][PF6] catalyzes hydrogen evolution from Et3NH+ in DMF with an overpotential reduced by 180 mV and thus represents the most efficient NiFe hydrogenase functional mimic. DFT calculations were carried out with several methods to investigate the catalytic cycle and, coupled with electrochemical measurements, allowed a mechanism to be proposed. A terminal or bridging hydride derivative was identified as the active intermediate, with the structure of the bridging form similar to that of the Ni? C active state of NiFe hydrogenases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号