首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The dynamic planar chirality in a peptide‐bound NiII‐salphen‐based macrocycle can be remotely controlled. First, a right‐handed (P)‐310‐helix is induced in the dynamic helical oligopeptides by a chiral amino acid residue far from the macrocyclic framework. The induced planar chirality remains dynamic in chloroform and acetonitrile, but is almost completely locked in fluoroalcohols as a result of the solvent‐induced transition of the peptide chains from a 310‐helix to a wider α‐helix, which freezes the rotation of the pendant peptide units around the macrocycle.  相似文献   

4.
5.
A photochemically interconvertible supramolecular nanotube–nanoparticle system was constructed through secondary assembling of self‐aggregates of amphiphilic porphyrin derivatives mediated by trans‐ and cis‐azobenzene‐bridged bis(permethyl‐β‐cyclodextrin). Significantly, these nanotubes and nanoparticles were able to interconvert upon irradiation at different wavelengths, and this photocontrolled morphological conversion is reversible and recyclable for tens of times, which will provide a feasible and convenient way to construct the ordered nanostructure with various morphologies that can be smartly controlled by the environmentally benign external stimulus.  相似文献   

6.
Hierarchical self‐assembly of complex supramolecular architectures allows for the emergence of novel properties at each level of complexity. The reaction of the ligand components A and B with FeII cations generates the [2×2] grid‐type functional building modules 1 and 2 , presenting spin‐transition properties and preorganizing an array of coordination sites that sets the stage for a second assembly step. Indeed, binding of LaIII ions to 1 and of AgI ions to 2 leads to a 1D columnar superstructure 3 and to a wall‐like 2D layer 4 , respectively, with concomitant modulation of the magnetic properties of 1 and 2 . Thus, to each of the two levels of structural complexity generated by the two sequential self‐assembly steps corresponds the emergence of novel functional features.  相似文献   

7.
Diarylethenes (DAEs) have rarely been used in the design of photoresponsive supramolecular assemblies with a well‐defined morphology transition owing to rather small structural changes upon photoisomerization. A supramolecular design based on the parallel conformation of DAEs enables the construction of photoresponsive dye assemblies that undergo remarkable nanomorphology transitions. The cooperative stacking of perylene bisimide (PBI) dyes was used to stabilize the parallel conformer of DAE through complementary hydrogen bonds. Atomic force microscopy, UV/Vis spectroscopy, and molecular modeling revealed that our DAE and PBI building blocks coassembled in nonpolar solvent to form well‐defined helical nanofibers featuring J‐type dimers of PBI dyes. Upon irradiating the coassembly solution with UV and visible light in turn, a reversible morphology change between nanofibers and nanoparticles was observed. This system involves the generation of a new self‐assembly pathway by means of photocontrol.  相似文献   

8.
Free‐standing nanoparticle films are of great importance for developing future nano‐electronic devices. We introduce a protein‐based fabrication strategy of free‐standing nanoparticle monolayer films. α‐Synuclein, an amyloidogenic protein, was utilized to yield a tightly packed gold‐nanoparticle monolayer film interconnected by protein β‐sheet interactions. Owing to the stable protein–protein interaction, the film was successfully expanded to a 4‐inch diameter sheet, which has not been achieved with any other free‐standing nanoparticle monolayers. The film was flexible in solution, so it formed a conformal contact, surrounding even microspheres. Additionally, the monolayer film was readily patterned at micrometer‐scale and thus unprecedented double‐component nanoparticle films were fabricated. Therefore, the free‐floating gold‐nanoparticle monolayer sheets with these properties could make the film useful for the development of bio‐integrated nano‐devices and high‐performance sensors.  相似文献   

9.
A hydrogen‐bonded cyclic tetramer is assembled with remarkably high effective molarities from a properly designed dinucleoside monomer. This self‐assembled species exhibits an impressive thermodynamic and kinetic stability and is formed with high fidelities within a broad concentration range.  相似文献   

10.
Dipyrrolylpyrazole (dpp) derivatives possessing an aryl ring at the pyrazole 4‐position were synthesized. Upon protonation, modified dpp derivatives formed a variety of assembled structures through complexation with carboxylates, as observed by single‐crystal X‐ray and synchrotron XRD analyses. In particular, the complexation of protonated dpp species possessing long alkyl chains with dicarboxylates resulted in highly ordered assembled structures, the packing modes of which as lamellar structures were controlled by the lengths of the spacer units between two carboxylate moieties. The charge‐carrier transporting properties of the solid materials were also controlled by bound anions, including dicarboxylates.  相似文献   

11.
The synthesis of C3‐ and C2‐symmetric benzene‐1,3,5‐tricarboxamides (BTAs) containing well‐defined oligodimethylsiloxane (oDMS) and/or alkyl side chains has been carried out. The influence of the bulkiness of the oDMS chains in the aggregation behavior of dilute solutions of the oDMS‐BTAs in methylcyclohexane was studied by temperature‐dependent UV spectroscopy. The formation of hierarchically self‐assembled aggregates was observed at different BTA concentrations, the tendency of aggregation increases by shortening or removing oDMS chains. Chiral BTAs were investigated with circular dichroism (CD) spectroscopy, showing a stronger tendency to aggregate than the achiral ones. Majority rules experiments show a linear behavior consistent with the existence of a high mismatch penalty energy. The most efficient oDMS‐BTAs organogelators have the ability to form stable organogels at 5 mg mL?1 (0.75 wt %) in hexane. Solid‐state characterization techniques indicate the formation of an intermolecular threefold hydrogen bonding between adjacent molecules forming thermotropic liquid crystals, exhibiting a hexagonal columnar organization from room temperature to above 150 °C. A decrease of the clearing temperatures was observed when increasing the number and length of the oligodimethylsiloxane chains. In addition to the three‐fold hydrogen bonding that leads to columnar liquid crystalline phase, segregation between the oDMS and aliphatic chains takes place in the BTA functionalized with two alkyl and one oDMS chain leading to a superlattice within the hexagonal structure with potential applications in lithography.  相似文献   

12.
Two 3,6‐bis(R‐1H‐1,2,3‐triazol‐4‐yl)pyridazines (R=mesityl, monodisperse (CH2 CH2O)12CH3) were synthesized by the copper(I)‐catalyzed azide–alkyne cycloaddition and self‐assembled with tetrakis(acetonitrile)copper(I) hexafluorophosphate and silver(I) hexafluoroantimonate in dichloromethane. The obtained copper(I) complexes were characterized in detail by time‐dependent 1D [1H, 13C] and 2D [1H‐NOESY] NMR spectroscopy, elemental analysis, high‐resolution ESI‐TOF mass spectrometry, and analytical ultracentrifugation. The latter characterization methods, as well as the comparison to analog 3,6‐di(2‐pyridyl)pyridazine (dppn) systems and their corresponding copper(I) and silver(I) complexes indicated that the herein described 3,6‐bis(1H‐1,2,3‐triazol‐4‐yl)pyridazine ligands form [2×2] supramolecular grids. However, in the case of the 3,6‐bis(1‐mesityl‐1H‐1,2,3‐triazol‐4‐yl)pyridazine ligand, the resultant red‐colored copper(I) complex turned out to be metastable in an acetone solution. This behavior in solution was studied by NMR spectroscopy, and it led to the conclusion that the copper(I) complex transforms irreversibly into at least one different metal complex species.  相似文献   

13.
14.
We have designed and synthesised a double‐headed nucleotide that presents two nucleobases in the interior of a dsDNA duplex. This nucleotide recognises and forms Watson–Crick base pairs with two complementary adenosines in a Watson–Crick framework. Furthermore, with judicious positioning in complementary strands, the nucleotide recognises itself through the formation of a T:T base pair. Thus, two novel nucleic acid motifs can be defined by using our double‐headed nucleotide. Both motifs were characterised by UV melting experiments, CD and NMR spectroscopy and molecular dynamics simulations. Both motifs leave the thermostability of the native dsDNA duplex largely unaltered. Molecular dynamics calculations showed that the double‐headed nucleotides are accommodated in the dsDNA by entirely local perturbations and that the modified duplexes retain an overall B‐type geometry with the dsDNA unwound by around 25 or 60°, respectively, in each of the modified motifs. Both motifs can be accommodated twice in a dsDNA duplex without incurring any loss of stability and extrapolating from this observation and the results of modelling, it is conceivable that both can be multiplied several times within a dsDNA duplex. These new motifs extend the DNA recognition repertoire and may form the basis for a complete series of double‐headed nucleotides based on all 16 base combinations of the four natural nucleobases. In addition, both motifs can be used in the design of nanoscale DNA structures in which a specific duplex twist is required.  相似文献   

15.
Self‐organization of organic molecules through weak noncovalent forces such as CH/π interactions and creation of large hierarchical supramolecular structures in the solid state are at the very early stage of research. The present study reports direct evidence for CH/π interaction driven hierarchical self‐assembly in π‐conjugated molecules based on custom‐designed oligophenylenevinylenes (OPVs) whose structures differ only in the number of carbon atoms in the tails. Single‐crystal X‐ray structures were resolved for these OPV synthons and the existence of long‐range multiple‐arm CH/π interactions was revealed in the crystal lattices. Alignment of these π‐conjugated OPVs in the solid state was found to be crucial in producing either right‐handed herringbone packing in the crystal or left‐handed helices in the liquid‐crystalline mesophase. Pitch‐ and roll‐angle displacements of OPV chromophores were determined to trace the effect of the molecular inclination on the ordering of hierarchical structures. Furthermore, circular dichroism studies on the OPVs were carried out in the aligned helical structures to prove the existence of molecular self‐assembly. Thus, the present strategy opens up new approaches in supramolecular chemistry based on weak CH/π hydrogen bonding, more specifically in π‐conjugated materials.  相似文献   

16.
A synthetic model glycoprotein was successfully synthesized using gelatin and mono‐6‐para‐toluenesulfonyl‐β‐cyclodextrin which were reacted under microwave conditions in basic media. The resulting glycoprotein is observed to form intermolecular inclusion complexes through complexation of the aromatic moieties along the polymer chain by the attached cyclodextrins. This phenomenon was analyzed and proven by 2D NMR spectroscopy (ROESY) and dynamic light scattering (DLS). Above the denaturation temperature, a strong increase of the hydrodynamic diameter was found due to enhanced supramolecular agglomeration. Such a novel glycoprotein with supramolecular self‐recognition would be promising in biomedical applications serving as a drug‐delivery basis polymer.

  相似文献   


17.
18.
19.
Bicomponent supramolecular polymers , consisting of two alternating molecules bridged through six H‐bonds, are observed by STM at the solid–liquid interface. Control of the geometry of the 1D architecture was obtained by using two different connecting molecules with different conformational rigidity, affording either linear (see picture, left) or zigzag (right) motifs.

  相似文献   


20.
Summary: A water‐soluble gold nanoparticle aggregate 2 was prepared by chloroauric acid and a polypseudorotaxane 1 of mono‐6‐thio‐β‐cyclodextrin with poly(propylene glycol) bis(2‐aminopropyl ether) ( ≈ 2 000) in the presence of sodium borohydride in N,N‐dimethylformamide (DMF) solution. The investigative results indicated that the gold nanoparticle aggregate 2 might act as an efficient DNA‐cleavage reagent.

A typical TEM image of gold nanoparticle aggregate 2 .  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号