共查询到20条相似文献,搜索用时 0 毫秒
1.
Savvas N. Georgiades Dr. Nurul H. Abd Karim Kogularamanan Suntharalingam Ramon Vilar Dr. 《Angewandte Chemie (International ed. in English)》2010,49(24):4020-4034
Guanine‐rich sequences of DNA can assemble into tetrastranded structures known as G‐quadruplexes. It has been suggested that these secondary DNA structures could be involved in the regulation of several key biological processes. In the human genome, guanine‐rich sequences with the potential to form G‐quadruplexes exist in the telomere as well as in promoter regions of certain oncogenes. The identification of these sequences as novel targets for the development of anticancer drugs has sparked great interest in the design of molecules that can interact with quadruplex DNA. While most reported quadruplex DNA binders are based on purely organic templates, numerous metal complexes have more recently been shown to interact effectively with this DNA secondary structure. This Review provides an overview of the important roles that metal complexes can play as quadruplex DNA binding molecules, highlighting the unique properties metals can confer to these molecules. 相似文献
2.
A hemin‐binding DNA G‐quadruplex (also known as a hemin aptamer or DNAzyme) has been previously reported to be able to enhance the peroxidase activity of hemin. In this work, we described a DNAzyme structure that had an effector‐recognizing part appearing as a single stranded DNA linkage flanked by two split G‐quadruplex halves. Hybridization of the single stranded part in the enzyme with a perfectly matched DNA strand (effector) formed a rigid DNA duplex between the two G‐quadruplex halves and thus efficiently suppressed the enzymatic activity of the G‐quadruplex/hemin complex, while the mismatched effector strand was not able to regulate the peroxidase activity effectively. With 2,2′‐azinobis(3‐ethylbenzthiazoline)‐6‐sulfonic acid (ABTS) as an oxidizable substrate, we were able to characterize the formation of the re‐engineered G‐quadruplex/hemin complex and verify its switchable peroxidase activity. Our results show that the split G‐quadruplex is an especially useful module to design low‐cost and label‐free sensors toward various biologically or environmentally interesting targets. 相似文献
3.
4.
Involvement of Long‐Lived Intermediate States in the Complex Folding Pathway of the Human Telomeric G‐Quadruplex 下载免费PDF全文
Irene Bessi Dr. Hendrik R. A. Jonker Dr. Christian Richter Prof. Dr. Harald Schwalbe 《Angewandte Chemie (International ed. in English)》2015,54(29):8444-8448
The energy landscapes of human telomeric G‐quadruplexes are complex, and their folding pathways have remained largely unexplored. By using real‐time NMR spectroscopy, we investigated the K+‐induced folding of the human telomeric DNA sequence 5′‐TTGGG(TTAGGG)3A‐3′. Three long‐lived states were detected during folding: a major conformation (hybrid‐1), a previously structurally uncharacterized minor conformation (hybrid‐2), and a partially unfolded state. The minor hybrid‐2 conformation is formed faster than the more stable hybrid‐1 conformation. Equilibration of the two states is slow and proceeds via a partially unfolded intermediate state, which can be described as an ensemble of hairpin‐like structures. 相似文献
5.
Yong Yan Ke Deng Prof. Zai Yu Zhixiang Wei Prof. 《Angewandte Chemie (International ed. in English)》2009,48(11):2003-2006
A game of Twister : The induced helicity of polyaniline and its supramolecular structures could be tuned by the methyl substitution of one of the monomers. By copolymerization of aniline with m‐toluidine, the helicity of copolymer (PMANI) nanofibers was totally inverted compared to that of polyaniline (PANI), while copolymer nanofibers with o‐toluidine (POANI) had the same helicity as that of polyaniline (see picture).
6.
Dr. Romain Haudecoeur Loic Stefan Dr. David Monchaud 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(38):12739-12747
Natural G‐quartets, a cyclic and coplanar array of four guanine residues held together through a Watson–Crick/Hoogsteen hydrogen‐bond network, have received recently much attention due to their involvement in G‐quadruplex DNA, an alternative higher‐order DNA structure strongly suspected to play important roles in key cellular events. Besides this, synthetic G‐quartets (SQ), which artificially mimic native G‐quartets, have also been widely studied for their involvement in nanotechnological applications (i.e., nanowires, artificial ion channels, etc.). In contrast, intramolecular synthetic G‐quartets (iSQ), also named template‐assembled synthetic G‐quartets (TASQ), have been more sparingly investigated, despite a technological potential just as interesting. Herein, we report on a particular iSQ named PNADOTASQ, which demonstrates very interesting properties in terms of DNA and RNA interaction (notably its selective recognition of quadruplexes according to a bioinspired process) and catalytic activities, through its ability to perform peroxidase‐like hemin‐mediated oxidations either in an autonomous fashion (i.e., as pre‐catalyst for TASQzyme reactions) or in conjunction with quadruplex DNA (i.e., as enhancing agents for DNAzyme processes). These results provide a solid scientific basis for TASQ to be used as multitasking tools for bionanotechnological applications. 相似文献
7.
8.
9.
Molecular Recognition of the Hybrid‐2 Human Telomeric G‐Quadruplex by Epiberberine: Insights into Conversion of Telomeric G‐Quadruplex Structures 下载免费PDF全文
Dr. Clement Lin Guanhui Wu Dr. Kaibo Wang Dr. Buket Onel Dr. Saburo Sakai Prof. Yong Shao Prof. Danzhou Yang 《Angewandte Chemie (International ed. in English)》2018,57(34):10888-10893
Human telomeres can form DNA G‐quadruplex (G4), an attractive target for anticancer drugs. Human telomeric G4s bear inherent structure polymorphism, challenging for understanding specific recognition by ligands or proteins. Protoberberines are medicinal natural‐products known to stabilize telomeric G4s and inhibit telomerase. Here we report epiberberine (EPI) specifically recognizes the hybrid‐2 telomeric G4 predominant in physiologically relevant K+ solution and converts other telomeric G4 forms to hybrid‐2, the first such example reported. Our NMR structure in K+ solution shows EPI binding induces extensive rearrangement of the previously disordered 5′‐flanking and loop segments to form an unprecedented four‐layer binding pocket specific to the hybrid‐2 telomeric G4; EPI recruits the (?1) adenine to form a “quasi‐triad” intercalated between the external tetrad and a T:T:A triad, capped by a T:T base pair. Our study provides structural basis for small‐molecule drug design targeting the human telomeric G4. 相似文献
10.
Tao Li Lili Shi Erkang Wang Prof. Dr. Shaojun Dong Prof. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(4):1036-1042
Two significant G‐quadruplex aptamers named AGRO100 and T30695 are identified as multifunctional aptamers that can bind the protein ligands nucleolin or HIV‐1 integrase and hemin. Besides their strong binding to target proteins, both AGRO100 and T30695 exhibit high hemin‐binding affinities comparable to that of the known aptamer (termed PS2M) selected by the in vitro evolution process. Most importantly, their corresponding hemin–DNA complexes reveal excellent peroxidase‐like activities, higher than that of the reported hemin–PS2M DNAzyme. This enables these multifunctional aptamers to be applied to the sensitive detection of proteins, which is demonstrated by applying AGRO100 to the chemiluminescence detection of nucleolin expressed at the surface of HeLa cells. Based on the specific AGRO100–nucleolin interaction, the surface‐expressed nucleolin of HeLa cells is labeled in situ with the hemin–AGRO100 DNAzyme, and then determined in the luminol–H2O2 system. Through this approach, the sensitive detection of total nucleolin expressed at the surface of about 6000 HeLa cells is accomplished. Our results suggest that exploiting new functions of existing aptamers will help to extend their potential applications in the biochemical field. 相似文献
11.
Environment‐Sensitive Probes Containing a 2,6‐Diethynylpyridine Motif for Fluorescence Turn‐On Detection and Induction of Nanoarchitectures of Human Telomeric Quadruplex 下载免费PDF全文
Rabindra Nath Das Manish Debnath Abhiket Gaurav Prof. Dr. Jyotirmayee Dash 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(50):16688-16693
Bis(phenylethynyl)pyridylcarboxamides with amide side chains at the para position of the NH2 group possess strong solvatochromic properties compared with the meta analogues. Fluorescence binding titrations show that these probes exhibit remarkable fluorescence turn‐on responses upon interacting with the human telomeric G‐quadruplex (h‐TELO). Förster resonance energy transfer melting analysis shows the high selectivity of these probes for h‐TELO over duplex DNA. Isothermal titration calorimetry, as well as UV/Vis and fluorescence spectroscopy studies, show that the meta analogue has a twofold binding affinity for h‐TELO over the para analogue. The noncovalent interaction of these small‐molecule probes with h‐TELO has been used to regulate the assembly of novel supramolecular nanoarchitectures. 相似文献
12.
Yan Xu Dr. Yuta Suzuki Makoto Komiyama Prof. 《Angewandte Chemie (International ed. in English)》2009,48(18):3281-3284
A trap that closes with a “click” : The copper‐catalyzed azide–alkyne cycloaddition can occur in different G‐quadruplex structures (see scheme). The species trapped by the click reaction can then be separated and analyzed. By using this approach, a DNA–RNA hybrid‐type G‐quadruplex structure formed by human telomeric DNA and RNA sequences was detected.
13.
Stabilization of Human Telomeric G‐Quadruplex and Inhibition of Telomerase Activity by Propeller‐Shaped Trinuclear PtII Complexes 下载免费PDF全文
Cui‐Xia Xu Yong Shen Qian Hu Yu‐Xuan Zheng Qian Cao Prof. Peter Z. Qin Prof. Yong Zhao Prof. Liang‐Nian Ji Prof. Zong‐Wan Mao 《化学:亚洲杂志》2014,9(9):2519-2526
Two novel propeller‐shaped, trigeminal‐ligand‐containing, flexible trinuclear PtII complexes, {[Pt(dien)]3(ptp)}(NO3)6 ( 1 ) and {[Pt(dpa)]3(ptp)}(NO3)6 ( 2 ) (dien: diethylenetriamine; dpa: bis‐(2‐pyridylmethyl)amine; ptp: 6′‐(pyridin‐3‐yl)‐3,2′:4′,3′′‐terpyridine), have been designed and synthesized, and their interactions with G‐quadruplex (G4) sequences are characterized. A combination of biophysical and biochemical assays reveals that both PtII complexes exhibit higher affinity for human telomeric (hTel) and c‐myc promoter G4 sequences than duplex DNA. Complex 1 binds and stabilizes hTel G4 sequence more effectively than complex 2 . Both complexes are found to induce and stabilize either antiparallel or parallel conformation of G4 structures. Molecular docking studies indicate that complex 1 binds into the large groove of the antiparallel hTel G4 structure (PDB ID: 143D) and complex 2 stacks onto the exposed G‐quartet of the parallel hTel G4 structure (PDB ID: 1KF1). Telomeric repeat amplification protocol assays demonstrate that both complexes are good telomerase inhibitors, with IC50 values of (16.0±0.4) μM and (4.20±0.25) μM for 1 and 2 , respectively. Collectively, the results suggest that these propeller‐shaped flexible trinuclear PtII complexes are effective and selective G4 binders and good telomerase inhibitors. This work provides valuable information for the interaction between multinuclear metal complexes with G4 DNA. 相似文献
14.
Dr. Dongdong Sun Dr. Yanan Liu Du Liu Rong Zhang Xicheng Yang Prof. Jie Liu 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(14):4285-4295
Telomerase inhibition is an attractive strategy for cancer chemotherapy. In the current study, we have synthesized and characterized two chiral ruthenium(II) complexes, namely, Λ‐[Ru(phen)2(p‐MOPIP)]2+ and Δ‐[Ru(phen)2(p‐MOPIP)]2+, where phen is 1,10‐phenanthroline and p‐MOPIP is 2‐(4‐methoxyphenyl)‐imidazo[4,5f][1,10]phenanthroline. The chiral selectivity of the compounds and their ability to discriminate quadruplex DNA were investigated by using UV/Vis, fluorescence spectroscopy, circular dichroism spectroscopy, fluorescence resonance energy transfer melting assay, polymerase chain reaction stop assay and telomerase repeat amplification protocol. The results indicate that the two chiral compounds could induce and stabilize the formation of antiparallel G‐quadruplexes of telomeric DNA in the presence or absence of metal cations. We report the remarkable ability of the two complexes Λ‐[Ru(phen)2(p‐MOPIP)]2+ and Δ‐[Ru(phen)2(p‐MOPIP)]2+ to stabilize selectively G‐quadruplex DNA; the former is a better G‐quadruplex binder than the latter. The anticancer activities of these complexes were evaluated by using the MTT assay. Interestingly, the antiproliferative activity of Λ‐[Ru(phen)2(p‐MOPIP)]2+ was higher than that of Δ‐[Ru(phen)2(p‐MOPIP)]2+, and Λ‐[Ru(phen)2(p‐MOPIP)]2+ showed a significant antitumor activity in HepG2 cells. The status of the nuclei in Λ/Δ‐[Ru(phen)2(p‐MOPIP)]2+‐treated HepG2 cells was investigated by using real‐time living cell microscopy to determine the effects of Λ/Δ‐[Ru(phen)2(p‐MOPIP)]2+ on intracellular accumulation. The results show that Λ/Δ‐[Ru(phen)2(p‐MOPIP)]2+ can be taken up by HepG2 cells and can enter into the cytoplasm as well as accumulate in the nuclei; this suggests that the nuclei were the cellular targets of Λ/Δ‐[Ru(phen)2(p‐MOPIP)]2+. 相似文献
15.
Dr. Madeleine Livendahl Dr. Jan Jamroskovic Svetlana Ivanova Peter Demirel Dr. Nasim Sabouri Dr. Erik Chorell 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(37):13004-13009
G‐quadruplex (G4) structures carry vital biological functions, and compounds that selectively target certain G4 structures have both therapeutic potential and value as research tools. Along this line, 2,2′‐diindolylmethanes have been designed and synthesized in this work based on the condensation of 3,6‐ or 3,7‐disubstituted indoles with aldehydes. The developed class of compounds efficiently stabilizes G4 structures without inducing conformational changes in such structures. Furthermore, the 2,2′‐diindolylmethanes target certain G4 structures more efficiently than others and this G4 selectivity can be altered by chemical modifications of the compounds. 相似文献
16.
Rong Huang Yang Zhao Hao Yang Yijing Liu Xiaocheng Weng Dr. Yangyang Zhou Minggang Deng Dr. Liang Xu Xiang Zhou Prof. 《化学:亚洲杂志》2010,5(1):114-122
G‐quadruplex DNA plays an important role in the potential therapeutic target for the design and development of anticancer drugs. As various G‐quadruplex sequences in the promoter regions or telomeres can form different secondary structural modes and display a diversity of biology functions, variant G‐quadruplex interactive agents may be necessary to cure different disease by differentiating variant types of G‐quadruplexes. We synthesize five cationic methylpyridylium corroles and compare the interactions of corroles with different types of G‐quadruplexes such as cmyc, htelo, and bcl2 by using surface plasmon resonance. Because of the importance of human telomere G‐quadruplex DNA, we focus on the biological properties of the interactions between human telomere G‐quadruplex DNA and corrole isomers using CD, Tm, PCR‐stop (PCR= polymerase chain reaction), and polymerase‐stop assay, which demonstrate the excellent ability of the corrole to induce and stabilize the G‐quadruplex. This study provides the first experimental insight into how selectivity might be achieved for different G‐quadruplexes by a single group of methylpyridylium corrole isomers that may be optimized for potential selective cancer therapy. 相似文献
17.
Compounds selectively binding and stabilizing G‐quadruplex structures could inhibit the telomerase or down‐ regulate the oncogenes and may act as anti‐cancer drugs. An alkaloid with non‐flat structure, fangchinoline, showed to strongly stabilize the intermolecular and intramolecular parallel stranded G‐quadruplex structure, increasing melting temperature by 20 and 23°C, respectively. The binding mode was investigated by using NMR and molecular modelling methods. Four human cell lines (HL‐60, BGC‐823, Bel‐7402 and KB) were taken to test the anti‐proliferation effects of fangchinoline and the IC50 values were ranged from 16 to 32 µmol/L. These results showed that the fangchinoline or related moiety derivatives may represent a class of telomere‐targeted agents as potential anti‐cancer drugs. 相似文献
18.
19.