首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The host–guest interaction between metal ions (Pt2+ and Cu2+) and a zirconium metal–organic framework (UiO‐66‐NH2) was explored using dynamic nuclear polarization‐enhanced 15N{1H} CPMAS NMR spectroscopy supported by X‐ray absorption spectroscopy and density functional calculations. The combined experimental results conclude that each Pt2+ coordinates with two NH2 groups from the MOF and two Cl? from the metal precursor, whereas Cu2+ do not form chemical bonds with the NH2 groups of the MOF framework. Density functional calculations reveal that Pt2+ prefers a square‐planar structure with the four ligands and resides in the octahedral cage of the MOF in either cis or trans configurations.  相似文献   

2.
A water‐stable luminescent terbium‐based metal–organic framework (MOF), {[Tb(L1)1.5(H2O)] ? 3 H2O}n (Tb‐MOF), with rod‐shaped secondary building units (SBUs) and honeycomb‐type tubular channels has been synthesized and structurally characterized by single‐crystal X‐ray diffraction. The high green emission intensity and the microporous nature of the Tb‐MOF indicate that it can potentially be used as a luminescent sensor. In this work, we show that Tb‐MOF can selectively sense Fe3+ and Al3+ ions from mixed metal ions in water through different detection mechanisms. In addition, it also exhibits high sensitivity for 2,4,6‐trinitrophenol (TNP) in the presence of other nitro aromatic compounds in aqueous solution by luminescence quenching experiments.  相似文献   

3.
The metal ions in a neutral Zn–MOF constructed from tritopic triacid H3L with inherent concave features, rigid core, and peripheral flexibility are found to exist in two distinct SBUs, that is, 0D and 1D. This has allowed site‐selective postsynthetic metal exchange (PSME) to be investigated and reactivities of the metal ions in two different environments in coordination polymers to be contrasted for the first time. Site‐selective transmetalation of Zn ions in the discrete environment is shown to occur in a single crystal‐to‐single crystal (SCSC) fashion, with metal ions such as Fe3+, Ru3+, Cu2+, Co2+, etc., whereas those that are part of 1D SBU sustain structural integrity, leading to novel bimetallic MOFs, which are inaccessible by conventional approaches. To the best of our knowledge, site‐selective postsynthetic exchange of an intraframework metal ion in a MOF that contains metal ions in discrete as well as polymeric SBUs is heretofore unprecedented.  相似文献   

4.
The highly porous and stable metal–organic framework (MOF) UiO‐66 was altered using post‐synthetic modifications (PSMs). Prefunctionalization allowed the introduction of carbon double bonds into the framework through a four‐step synthesis from 2‐bromo‐1,4‐benzenedicarboxylic acid; the organic linker 2‐allyl‐1,4‐benzenedicarboxylic acid was obtained. The corresponding functionalized MOF (UiO‐66‐allyl) served as a platform for further PSMs. From UiO‐66‐allyl, epoxy, dibromide, thioether, diamine, and amino alcohol functionalities were synthesized. The abilities of these compounds to adsorb CO2 and N2 were compared, which revealed the structure–selectivity correlations. All synthesized MOFs showed profound thermal stability together with an increased ability for selective CO2 uptake and molecular gate functionalities at low temperatures.  相似文献   

5.
Four new three‐dimensional isostructural lanthanide–cadmium metal–organic frameworks (Ln–Cd MOFs), [LnCd2(imdc)2(Ac)(H2O)2]?H2O (Ln=Pr ( 1 ), Eu ( 2 ), Gd ( 3 ), and Tb ( 4 ); H3imdc=4,5‐imidazoledicarboxylic acid; Ac=acetate), have been synthesized under hydrothermal conditions and characterized by IR, elemental analyses, inductively coupled plasma (ICP) analysis, and X‐ray diffraction. Single‐crystal X‐ray diffraction shows that two LnIII ions are surrounded by four CdII ions to form a heteronuclear building block. The blocks are further linked to form 3D Ln–Cd MOFs by the bridging imdc3? ligand. Furthermore, the left‐ and right‐handed helices array alternatively in the lattice. Eu–Cd and Tb–Cd MOFs can emit characteristic red light with the EuIII ion and green light with the TbIII ion, respectively, while both Gd–Cd and Pr–Cd MOFs generate blue emission when they are excited. Different concentrations of Eu3+ and Tb3+ ions were co‐doped into Gd–Cd/Pr–Cd MOFs, and tunable luminescence from yellow to white was achieved. White‐light emission was obtained successfully by adjusting the excitation wavelength or the co‐doping ratio of the co‐doped Gd–Cd and Pr–Cd MOFs. These results show that the relative emission intensity of white light for Gd–Cd:Eu3+,Tb3+ MOFs is stronger than that of Pr–Cd:Eu3+,Tb3+ MOFs, which implies that the Gd complex is a better matrix than the Pr complex to obtain white‐light emission materials.  相似文献   

6.
The typically stable Zr‐based metal–organic frameworks (MOFs) UiO‐66 and UiO‐66‐NH2 were treated with tetrafluoromethane (CF4) and hexafluoroethane (C2F6) plasmas. Through interactions between fluoride radicals from the perfluoroalkane plasma and the zirconium–oxygen bonds of the MOF, the resulting materials showed the development of mesoporosity, creating a hierarchical pore structure. It is anticipated that this strategy can be used as a post‐synthetic technique for developing hierarchical networks in a variety of MOFs.  相似文献   

7.
A UiO‐66‐NCS MOF was formed by postsynthetic modification of UiO‐66‐NH2. The UiO‐66‐NCS MOFs displays a circa 20‐fold increase in activity against the chemical warfare agent simulant dimethyl‐4‐nitrophenyl phosphate (DMNP) compared to UiO‐66‐NH2, making it the most active MOF materials using a validated high‐throughput screening. The ?NCS functional groups provide reactive handles for postsynthetic polymerization of the MOFs into functional materials. These MOFs can be tethered to amine‐terminated polypropylene polymers (Jeffamines) through a facile room‐temperature synthesis with no byproducts. The MOFs are then crosslinked into a MOF–polythiourea (MOF–PTU) composite material, maintaining the catalytic properties of the MOF and the flexibility of the polymer. This MOF–PTU hybrid material was spray‐coated onto Nyco textile fibers, displaying excellent adhesion to the fiber surface. The spray‐coated fibers were screened for the degradation of DMNP and showed durable catalytic reactivity.  相似文献   

8.
A new tetracarboxylate ligand having short and long arms formed 2D layer ZnII coordination polymer 1 with paddle‐wheel secondary building units under solvothermal conditions. The framework undergoes solvent‐specific single crystal‐to‐single crystal (SC‐SC) transmetalation to produce 1Cu . With a sterically encumbered dipyridyl linker, the same ligand forms non‐interpenetrated, 3D, pillared‐layer ZnII metal–organic framework (MOF) 2 , which takes part in SC‐SC linker‐exchange reactions to produce three daughter frameworks. The parent MOF 2 shows preferential incorporation of the longest linker in competitive linker‐exchange experiments. All the 3D MOFs undergo complete SC‐SC transmetalation with CuII, whereby metal exchange in different solvents and monitoring of X‐ray structures revealed that bulky solvated metal ions lead to ordering of the shortest linker in the framework, which confirms that the solvated metal ions enter through the pores along the linker axis.  相似文献   

9.
Semiconductive metal–organic frameworks (MOFs) have emerged in applications such as chemical sensors, electrocatalysts, energy storage materials, and electronic devices. However, examples of semiconductive MOFs within flexible electronics have not been reported. We present flexible X‐ray detectors prepared by thermoplastic dispersal of a semiconductive MOF ( SCU‐13 ) through a commercially available polymer, poly(vinylidene fluoride). The flexible detectors exhibit efficient X‐ray‐to‐electric current conversion with enhanced charge‐carrier mobility and low trap density compared to pelleted devices. A high X‐ray detection sensitivity of 65.86 μCGyair?1 cm?2 was achieved, which outperforms other pelleted devices and commercial flexible X‐ray detectors. We demonstrate that the MOF‐based flexible detectors can be operated at multiple bending angles without a deterioration in detection performance. As a proof‐of‐concept, an X‐ray phase contrast under bending conditions was constructed using a 5×5 pixelated MOF‐based imager.  相似文献   

10.
Metal–organic frameworks (MOFs) containing ZrIV‐based secondary building units (SBUs), as in the UiO‐66 series, are receiving widespread research interest due to their enhanced chemical and mechanical stabilities. We report the synthesis and extensive characterisation, as both bulk microcrystalline and single crystal forms, of extended UiO‐66 (Zr and Hf) series MOFs containing integral unsaturated alkene, alkyne and butadiyne units, which serve as reactive sites for postsynthetic modification (PSM) by halogenation. The water stability of a Zr–stilbene MOF allows the dual insertion of both ?OH and ?Br groups in a single, aqueous bromohydrination step. Quantitative bromination of alkyne‐ and butadiyne‐containing MOFs is demonstrated to be stereoselective, as a consequence of the linker geometry when bound in the MOFs, while the inherent change in hybridisation and geometry of integral linker atoms is facilitated by the high mechanical stabilities of the MOFs, allowing bromination to be characterised in a single‐crystal to single‐crystal (SCSC) manner. The facile addition of bromine across the unsaturated C?C bonds in the MOFs in solution is extended to irreversible iodine sequestration in the vapour phase. A large‐pore interpenetrated Zr MOF demonstrates an I2 storage capacity of 279 % w/w, through a combination of chemisorption and physisorption, which is comparable to the highest reported capacities of benchmark iodine storage materials for radioactive I2 sequestration. We expect this facile PSM process to not only allow trapping of toxic vapours, but also modulate the mechanical properties of the MOFs.  相似文献   

11.
The strategy to functionalize water‐stable metal–organic frameworks (MOFs) in order to improve their CO2 uptake capacities for efficient CO2 separation remains limited and challenging. We herein present an effective approach to functionalize a prominent water‐stable MOF, UiO‐66(Zr), by a combination of optimization and metalated‐ligand exchange. In particular, by systematic optimization, we have successfully obtained UiO‐66(Zr) of the highest BET surface area reported so far (1730 m2 g?1). Moreover, it shows a hybrid Type I/IV N2 isotherm at 77 K and a mesopore size of 3.9 nm for the first time. The UiO‐66 MOF underwent a metalated‐ligand‐exchange (MLE) process to yield a series of new UiO‐66‐type MOFs, among which UiO‐66‐(COONa)2‐EX and UiO‐66‐(COOLi)4‐EX MOFs have both enhanced CO2 working capacity and IAST CO2/N2 selectivity. Our approach has thus suggested an alternative design to achieve water‐stable MOFs with high crystallinity and gas uptake for efficient CO2 separation.  相似文献   

12.
With the rapid development of metal–organic frameworks (MOFs), a variety of MOFs and their derivatives have been synthesized and reported in recent years. Commonly, multifunctional aromatic polycarboxylic acids and nitrogen‐containing ligands are employed to construct MOFs with fascinating structures. 4,4′,4′′‐(1,3,5‐Triazine‐2,4,6‐triyl)tribenzoic acid (H3TATB) and the bidentate nitrogen‐containing ligand 1,3‐bis[(imidazol‐1‐yl)methyl]benzene (bib) were selected to prepare a novel ZnII‐MOF under solvothermal conditions, namely poly[[tris{μ‐1,3‐bis[(imidazol‐1‐yl)methyl]benzene}bis[μ3‐4,4′,4′′‐(1,3,5‐triazine‐2,4,6‐triyl)tribenzoato]trizinc(II)] dimethylformamide disolvate trihydrate], {[Zn3(C24H12N3O6)2(C14H14N4)3]·2C3H7NO·3H2O}n ( 1 ). The structure of 1 was characterized by single‐crystal X‐ray diffraction, IR spectroscopy and powder X‐ray diffraction. The properties of 1 were investigated by thermogravimetric and fluorescence analysis. Single‐crystal X‐ray diffraction shows that 1 belongs to the monoclinic space group Pc. The asymmetric unit contains three crystallographically independent ZnII centres, two 4,4′,4′′‐(1,3,5‐triazine‐2,4,6‐triyl)tribenzoate (TATB3?) anions, three complete bib ligands, one and a half free dimethylformamide molecules and three guest water molecules. Each ZnII centre is four‐coordinated and displays a distorted tetrahedral coordination geometry. The ZnII centres are connected by TATB3? anions to form an angled ladder chain with large windows. Simultaneously, the bib ligands link ZnII centres to give a helical Zn–bib–Zn chain. Furthermore, adjacent ladders are bridged by Zn–bib–Zn chains to form a fascinating three‐dimensional self‐penetrated framework with the short Schläfli symbol 65·7·813·9·10. In addition, the luminescence properties of 1 in the solid state and the fluorescence sensing of metal ions in suspension were studied. Significantly, compound 1 shows potential application as a fluorescent sensor with sensing properties for Zr4+ and Cu2+ ions.  相似文献   

13.
We transformed the hydrophilic metal–organic framework (MOF) UiO‐67 into hydrophobic UiO‐67‐R s (R=alkyl) by introducing alkyl chains into organic linkers, which not only protected hydrophilic Zr6O8 clusters to make the MOF interspace superoleophilic, but also led to a rough crystal surface beneficial for superhydrophobicity. The UiO‐67‐R s displayed high acid, base, and water stability, and long alkyl chains offered better hydrophobicity. Good hydrophobicity/oleophilicity were also possible with mixed‐ligand MOFs containing metal‐binding ligands. Thus, a (super)hydrophobic MOF catalyst loaded with Pd centers efficiently catalyzed Sonogashira reactions in water at ambient temperature. Studies of the hydrophobic effects of the coordination interspace and the outer surface suggest a simple de novo strategy for the synthesis of superhydrophobic MOFs that combine surface roughness and low surface energy. Such MOFs have potential for environmentally friendly catalysis and water purification.  相似文献   

14.
A method for modifying the external surfaces of a series of nanoscale metal–organic frameworks (MOFs) with 1,2‐dioleoyl‐sn‐glycero‐3‐phosphate (DOPA) is presented. A series of zirconium‐based nanoMOFs of the same topology (UiO‐66, UiO‐67, and BUT‐30) were synthesized, isolated as aggregates, and then conjugated with DOPA to create stably dispersed colloids. BET surface area analysis revealed that these structures maintain their porosity after surface functionalization, providing evidence that DOPA functionalization only occurs on the external surface. Additionally, dye‐labeled ligand loading studies revealed that the density of DOPA on the surface of the nanoscale MOF correlates to the density of metal nodes on the surface of each MOF. Importantly, the surface modification strategy described will allow for the general and divergent synthesis and study of a wide variety of nanoscale MOFs as stable colloidal materials.  相似文献   

15.
Two new metal–organic frameworks (MOFs), namely, three‐dimensional poly[diaquabis{μ2‐1,4‐bis[(2‐methyl‐1H‐imidazol‐1‐yl)methyl]benzene}bis(μ2‐glutarato)dinickel(II)] monohydrate], {[Ni2(C5H6O4)2(C16H18N4)2(H2O)2]·H2O}n or {[Ni2(Glu)2(1,4‐mbix)2(H2O)2]·H2O}n, ( I ), and two‐dimensional poly[[{μ2‐1,4‐bis[(2‐methyl‐1H‐imidazol‐1‐yl)methyl]benzene}(μ2‐glutarato)zinc(II)] tetrahydrate], {[Zn(C5H6O4)(C16H18N4)]·4H2O}n or {[Zn(Glu)(1,4‐mbix)]·4H2O}n ( II ), have been synthesized hydrothermally using glutarate (Glu2?) mixed with 1,4‐bis[(2‐methyl‐1H‐imidazol‐1‐yl)methyl]benzene (1,4‐mbix), and characterized by single‐crystal X‐ray diffraction, IR and UV–Vis spectroscopy, powder X‐ray diffraction, and thermogravimetric and photoluminescence analyses. NiII MOF ( I ) shows a 4‐connected 3D framework with point symbol 66, but is not a typical dia network. ZnII MOF ( II ) displays a two‐dimensional 44‐ sql network with one‐dimensional water chains penetrating the grids along the c direction. The solid‐state photoluminescence analysis of ( II ) was performed at room temperature and the MOF exhibits highly selective sensing toward Fe3+ and Cr2O72? ions in aqueous solution.  相似文献   

16.
Ionic metal–organic frameworks (MOFs) are a subclass of porous materials that have the ability to incorporate different charged species in confined nanospace by ion‐exchange. To date, however, very few examples combining mesoporosity and water stability have been realized in ionic MOF chemistry. Herein, we report the rational design and synthesis of a water‐stable anionic mesoporous MOF based on uranium and featuring tbo‐type topology. The resulting tbo MOF exhibits exceptionally large open cavities (3.9 nm) exceeding those of all known anionic MOFs. By supercritical CO2 activation, a record‐high Brunauer‐Emmett‐Teller (BET) surface area (2100 m2 g?1) for actinide‐based MOFs has been obtained. Most importantly, however, this new uranium‐based MOF is water‐stable and able to absorb positively charged ions selectively over negatively charged ones, enabling the efficient separation of organic dyes and biomolecules.  相似文献   

17.
Using polynuclear metal clusters as nodes, many high‐symmetry high‐connectivity nets, like 8‐connnected bcu and 12‐connected fcu , have been attained in metal–organic frameworks (MOFs). However, construction of low‐symmetry high‐connected MOFs with a novel topology still remains a big challenge. For example, a uninodal 8‐connected lsz network, observed in inorganic ZrSiO4, has not been topologically identified in MOFs. Using 2,2′‐difluorobiphenyl‐4,4′‐dicarboxylic acid (H2L) as a new linker and 1,2,4‐triazole (Htrz) as a coligand, a novel three‐dimensional CdII–MOF, namely poly[tetrakis(μ4‐2,2′‐difluorobiphenyl‐4,4′‐dicarboxylato‐κ5O1,O1′:O1′:O4:O4′)tetrakis(N,N‐dimethylformamide‐κO)tetrakis(μ3‐1,2,4‐triazolato‐κ3N1:N2:N4)hexacadmium(II)], [Cd6(C14H6F2O4)4(C2H2N3)4(C3H7NO)4]n, (I), has been prepared. Single‐crystal structure analysis indicates that six different CdII ions co‐exist in (I) and each CdII ion displays a distorted [CdO4N2] octahedral geometry with four equatorial O atoms and two axial N atoms. Three CdII ions are connected by four carboxylate groups and four trz ligands to form a linear trinuclear [Cd3(COO)4(trz)4] cluster, as do the other three CdII ions. Two Cd3 clusters are linked by trz ligands in a μ1,2,4‐bridging mode to produce a two‐dimensional CdII–triazolate layer with (6,3) topology in the ab plane. These two‐dimensional layers are further pillared by the L2− ligands along the c axis to generate a complicated three‐dimensional framework. Topologically, regarding the Cd3 cluster as an 8‐connected node, the whole architecture of (I) is a uninodal 8‐connected lsz framework with the Schläfli symbol (422·66). Complex (I) was further characterized by elemental analysis, IR spectroscopy, powder X‐ray diffraction, thermogravimetric analysis and a photoluminescence study. MOF (I) has a high thermal and water stability.  相似文献   

18.
A simple, rapid and efficient synthesis of the metal‐organic framework (MOF) HKUST‐1 [Cu3(1,3,5‐benzene‐tri‐carboxilic‐acid)2] by microwave irradiation is described, which afforded a homogeneous and highly selective material. The unusually short time to complete the synthesis by microwave irradiation is mainly attributable to rapid nucleation rather than to crystal growth rate. Using this method, HKUST‐1‐MW (MW=microwave) could be prepared within 20 min, whereas by hydrothermal synthesis, involving conventional heating, the preparation time is 8 h. Work efficiency was improved by the good performance of the obtained HKUST‐1‐MW which exhibited good selective adsorption of heavy metal ions, as well as a remarkably high adsorption affinity and adsorption capacity, but no adsorption of Hg2+ under the same experimental conditions. Of particular importance is the preservation of the structure after metal‐ion adsorption, which remained virtually intact, with only a few changes in X‐ray diffraction intensity and a moderate decline in surface area. Synthesis of the polyoxometalate‐containing HKUST‐1‐MW@H3PW12O40 afforded a MOF with enhanced stability in water, due to the introduced Keggin‐type phosphotungstate, which systematically occluded in the cavities constituting the walls between the mesopores. Different Cu/W ratios were investigated according to the extrusion rate of cooper ions concentration, without significant structural changes after adsorption. The MOFs obtained feature particle sizes between 10–20 μm and their structures were determined using synchrotron‐based X‐ray diffraction. The results of this study can be considered important for potentially wider future applications of MOFs, especially to attend environmental issues.  相似文献   

19.
Controlling the arrangement of different metal ions to achieve ordered heterogeneity in metal–organic frameworks (MOFs) has been a great challenge. Herein, we introduce a template‐directed approach, in which a 1D metal–organic polymer incorporating well‐defined binding pockets for the secondary metal ions used as a structural template and starting material for the preparation of well‐ordered bimetallic MOF‐74s under heterogeneous‐phase hydrothermal reaction conditions in the presence of secondary metal ions such as Ni2+ and Mg2+ in 3 h. The resulting bimetallic MOF‐74s were found to possess a nearly 1:1 metal ratio regardless of their initial stoichiometry in the reaction mixture, thus demonstrating the possibility of controlling the arrangement of metal ions within the secondary building blocks in MOFs to tune their intrinsic properties such as gas affinity.  相似文献   

20.
Single crystals of the FeII metal‐organic framework (MOF) with 1,3,5‐benzenetricarboxylate (BTC) as a linker were solvothermally obtained under air‐free conditions. X‐ray diffraction analysis of the crystals demonstrated a structure for FeII‐MOF analogous to that of [Cu3(BTC)2] (HKUST‐1). Unlike HKUST‐1, however, the FeII‐MOF did not retain permanent porosity after exchange of guest molecules. The Mössbauer spectrum of the FeII‐MOF was recorded at 80 K in zero field yielding an apparent quadrupole splitting of ΔEQ = 2.43 mm · s–1, and an isomer shift of δ = 1.20 mm · s–1, consistent with high‐spin central iron(II) atoms. Air exposure of the FeII‐MOF was found to result in oxidation of the metal atoms to afford FeIII. These results demonstrate that FeII‐based MOFs can be prepared in similar fashion to the [Cu3(BTC)2], but that they lack permanent porosity when degassed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号