首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Push–pull aromatics are not popular as optoelectronic materials because their supramolecular organization is difficult to control. However, recent progress with synthetic methods has suggested that the directional integration of push–pull components into multicomponent photosystems should become possible. In this study, we report the design, synthesis, and evaluation of double‐ or triple‐channel architectures that contain π stacks with push–pull components in parallel or mixed orientation. Moreover, the parallel push–pull stacks were uniformly oriented with regard to co‐axial stacks, either with inward or outward oriented push–pull dipoles. Hole‐transporting (p) aminoperylenemonoimides (APIs) and aminonaphthalimides (ANIs) are explored for ordered push–pull stacks. For the co‐axial electron‐transporting (n) stacks, naphthalenediimides (NDIs) are used. In double‐channel photosystems, mixed push–pull stacks are overall less active than parallel push–pull stacks. The orientation of the parallel push–pull stacks with regard to the co‐axial NDI stacks has little influence on activity. In triple‐channel photosystems, outward‐directed dipoles in bridging stacks between peripheral p and central n channels show higher activity than inward‐directed dipolar stacks. Higher activities in response to direct irradiation of outward‐directed parallel stacks reveal the occurrence of quite remarkable optical gating.  相似文献   

2.
The development of synthetic methods to build complex functional systems is a central and current challenge in organic chemistry. This goal is important because supramolecular architectures of highest sophistication account for function in nature, and synthetic organic chemistry, contrary to high standards with small molecules, fails to deliver functional systems of similar complexity. In this report, we introduce a collection of fullerenes that is compatible with the construction of multicomponent charge‐transfer cascades and can be placed in triple‐channel architectures next to stacks of oligothiophenes and naphthalenediimides. For the creation of this collection, modern fullerene chemistry—methanofullerenes and 1,4‐diarylfullerenes—is combined with classical Nierengarten–Diederich–Bingel approaches.  相似文献   

3.
Anion–π catalysis, that is the stabilization of anionic transition states on π‐acidic aromatic surfaces, has so far been developed with naphthalenediimides (NDIs). This report introduces perylenediimides (PDIs) to anion–π catalysis. The quadrupole moment of PDIs (+23.2 B) is found to exceed that of NDIs and reach new records with acceptors in the core (+70.9 B), and their larger surface provides space to better accommodate chemical transformations. Unlike NDIs, the activity of PDI catalysts for enolate and enamine addition is determined by the twist of their π surface rather than their reducibility. These results, further strengthened by nitrate inhibition and circular dichroism spectroscopy, support an understanding of anion–π interactions centered around quadrupole moments, i.e., electrostatic contributions, rather than redox potentials and charge transfer. The large PDI surfaces provide access to the highest enantioselectivities observed so far in anion–π catalysis (96 % ee).  相似文献   

4.
The charge‐transfer process in noncovalent perylenediimide (PDI)/DNA complexes has been investigated by using nanosecond laser flash photolysis (LFP) and photocurrent measurements. The PDI/DNA complexes were prepared by inclusion of cationic PDI molecules into the artificial cavities created inside DNA. The LFP experiments showed that placement of the PDI chromophore at a specific site and included within the base stack of DNA led to the efficient generation of a charge‐separated state with a long lifetime by photoexcitation. When two PDI chromophores were separately placed at different positions in DNA, the yield of the charge‐separated state with a long lifetime was dependent upon the number of A–T base pairs between the PDIs, which was explained by electron hopping from one PDI to another. Photocurrent generation of the DNA‐modified electrodes with the complex was also dependent upon the arrangement of the PDI chromophores. A good correlation was obtained between observed charge separation and photocurrent generation on the PDI/DNA‐modified electrodes, which demonstrated the importance of the defined arrangement and assembly of organic chromophores in DNA for efficient charge separation and transfer in multichromophore arrays.  相似文献   

5.
We introduce zipper assembly as a simple and general concept to create complex functional architectures on conducting surfaces. Rigid-rod pi-stack architecture composed of p-oligophenyl rods and blue naphthalenediimide (NDI) stacks is selected as an example. First, short p-quaterphenyl initiators with four anionic NDIs are deposited on gold. Then, long p-octiphenyl propagators with eight cationic NDIs are added. The lower half of the propagator pi-stacks with the initiator, whereas the upper half of the molecule remains free. These cationic sticky-ends zip up with anionic propagators to produce anionic sticky-ends, and so on. Zipper assembly on gold nanoparticles is demonstrated by the appearance of the absorption of face-to-face NDI pi-stacks and the shift of the surface plasmon resonance band with increasing layer thickness. Complete inhibition by zipper capping demonstrates that zipper assembly affords complex architectures that are more ordered than those obtained by conventional layer-by-layer (LBL) approaches. Zipper assembly on gold electrodes produces increasing photocurrents with increasing number of zipped layers. The photocurrents obtained by this method are much higher than those obtained by conventional LBL controls; zipper termination by capping cleanly stops any increase in photocurrent.  相似文献   

6.
Steady-state and transient photocurrent measurements were carried out to study the charge carrier transport properties of polymer liquid crystal (LC) containing oxadiazole (OXD) and amine moieties in the same side chain. The steady-state photocurrent measurement with asymmetric electrodes of ITO and Al and a short penetration depth of the illumination light indicated that both electrons and holes can be transported in this film. The transient hole photocurrent observed by time-of-flight (TOF) experiments was dispersive at room temperature. The hole drift mobility significantly depended on temperature and electric field and was determined to be 6.1 x 10(-8) cm2/Vs at a field of 9.1 x 10(5) V/cm. According to the disorder formalism, the Gaussian width of the density of states was determined to be 170 meV for holes. Despite the indication of possible electron transport in this film, we could not determine the electron mobility by TOF experiments due to strong dispersive photocurrent. We discuss the present charge transport properties of the film in relation to a large dipole attributed to an electrical push-pull structure of p-dimethylaminophenyl-substitited OXD moiety in polymer LC and its electroluminescent properties.  相似文献   

7.
Solution‐processable polymers consisting of perylene diimide (PDI) acceptor moieties alternating with dithienothiophene (DTT), N‐dodecyl‐dithienopyrrole (DTP), or oligomers of these donor groups have been synthesized. We have, in addition to varying the donor, varied the N,N′ substituents of the PDIs. The thermal, optical, electrochemical, and charge‐transport properties of the polymers have been investigated. The polymers show broad absorption extending from 300 to 1000 nm with optical band gaps as low as 1.2 eV; the band gap decreases with increasing the conjugation length of donor block, or by replacement of DTT by DTP. The electron affinities of the polymers, estimated from electrochemical data, range from ?3.87 to ?4.01 eV and are slightly affected by the specific choice of donor moiety, while the estimated ionization potentials (?5.31 to ?5.92 eV) are more sensitive to the choice of donor. Bottom‐gate top‐contact organic field‐effect transistors based on the polymers generally exhibit n‐channel behavior with electron mobilities as high as 1.7 × 10–2 cm2/V/s and on/off ratios as high as 106; one PDI‐DTP polymer is an ambipolar transport material with electron mobility of 4 × 10–4 cm2/V/s and hole mobility of 4 × 10–5 cm2/V/s in air. There is considerable variation in the charge transport properties of the polymers with the chemical structures. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

8.
Previous studies of perylenediimides (PDIs) mostly utilized the lowest singlet excited state S1. Generation of a triplet excited state (T1) in PDIs is important for applications ranging from photodynamic therapy to photovoltaics; however, it remains a formidable task. Herein, we developed a heavy‐atom‐free strategy to prompt the T1←S1 intersystem crossing (ISC) by introducing electron‐donating aryl (Ar) groups at the head positions of an electron‐deficient perylenediimide (PDI) core. We found that the ISC efficiency increases from 8 to 54 % and then to 86 % by increasing the electron‐donating ability of head‐substituted aryl groups from phenyl (p‐PDI) to methoxyphenyl (MeO‐PDI) and then to methylthioxyphenyl (MeS‐PDI). By enhancing the intramolecular charge‐transfer (ICT) interaction from p‐PDI to MeO‐PDI, and then to MeS‐PDI, singlet oxygen generation via energy‐transfer reactions from T1 of PDIs to 3O2 was demonstrated with the highest yield of up to 80 %. These results provide guidelines for developing new triplet‐generating PDIs and related rylene diimides for optoelectronic applications.  相似文献   

9.
We report the programmed ("zipper") assembly of photoactive rigid-rod pi-stack architectures composed of blue (b), red (r) and colorless (n) core-substituted naphthalene diimides (NDIs) attached along p-oligophenyl (POP) rods. The design strategy and multistep syntheses of the required NDI-POP conjugates are described first. The activity of the obtained up to three-component cascade architectures is characterized in current-voltage curves, which are analyzed to reveal short circuit currents and fill factors as significant characteristics. With one-component zippers, rNDIs are found to give much higher photocurrents than bNDIs. In two-component zippers, substitution of rNDIs by nNDIs in meaningful positions is shown to give increased photocurrents despite reduced absorption of light. Three-component zippers are shown to provide access to an increased structural complexity for more subtle control of function. Reaching from 0.27 to 0.54, fill factors, a measure for the power generated with light, are found to be most sensitive to the directionality of multicomponent cascade architectures. Overall, these results are in agreement with photoinduced charge separation between rNDI (but not bNDI) acceptors and POP donors followed by directional intrastack electron transfer from rNDI radical anions to nNDI acceptors, that is, the formation of supramolecular cascade n/p-heterojunctions.  相似文献   

10.
We report that self-sorting during self-organizing surface-initiated copolymerization (co-SOSIP) provides facile access to oriented multicomponent architectures. Alternate lateral and uniform axial self-sorting into formal supramolecular n/p-heterojunction photosystems is found to generate up to 40 times more photocurrent. More or less topological matching gives rise to alternate axial self-sorting into inactive charge-transfer complexes or uniform lateral sorting into the less active macrodomains, respectively. Experimental support for self-repair during co-SOSIP is reported. Initiators on the surface are shown to serve as templates for the self-sorting into multichannel architectures of freely variable composition.  相似文献   

11.
Naphthalenediimides (NDIs) are privileged scaffolds par excellence, of use in functional systems from catalysts to ion channels, photosystems, sensors, ordered matter in all forms, tubes, knots, stacks, sheets, vesicles, and colored over the full visible range. Despite this extensively explored chemical space, there is still room to discover core-substituted NDIs with fundamentally new properties: NDIs with cyclic trisulfides (i.e., trisulfanes) in their core absorb at 668 nm, emit at 801 nm, and contract into disulfides (i.e., dithietes) upon irradiation at <475 nm. Intramolecular 1,5-chalcogen bonds account for record redshifts with trisulfides, ring-tension mediated chalcogen-bond-mediated cleavage for blueshifts to 492 nm upon ring contraction. Cyclic oligochalcogenides (COCs) in the NDI core open faster than strained dithiolanes as in asparagusic acid and are much better retained on thiol exchange affinity columns. This makes COC-NDIs attractive not only within the existing multifunctionality, particularly artificial photosystems, but also for thiol-mediated cellular uptake.  相似文献   

12.
A Marcus electron transfer theory coupled with an incoherent polaron hopping and charge diffusion model in combining with first‐principle quantum chemistry calculation was applied to investigating the effects of heteroatom on the intermolecular charge transfer rate for a series of heteroacene molecules. The influences of intermolecular packing and charge reorganization energy were discussed. It was found that the sulphur and nitrogen substituted heteroacenes were intrinsically hole‐transporting materials due to the reduced hole reorganization energy and the enhanced overlap between HOMOs. For the oxygen‐substituted heteroacene, it was found that both the electronic couplings and the reorganization energies for holes and electrons were comparative, indicating the application potential of ambipolar devices. Most interestingly, for the boron‐substituted heteroacenes, theoretical calculations predicted a promising electron‐transport material, which is rare for organic materials. These findings provide insights into rationally designing organic semiconductors with specific properties.  相似文献   

13.
Photoinduced color change of naphthalene diimides (NDIs) bearing alkylamine moieties has been observed in the solid state. The color change is attributed to the generation of a NDI radical‐anion species, which may be formed through a photoinduced electron‐transfer process from the alkylamine moiety to the NDI. The photosensitivity of NDIs is highly dependent on the structures of the alkylamine moieties. Crystallographic analysis, kinetic analysis, UV/Vis/NIR spectroscopic measurements, and analysis of the photoproduct suggested that a radical anion was formed through an irreversible process initiated by proton abstraction between an amine radical cation and the neutral amine moiety. The radical anions formed stacks including mixed‐valence stacks and radical‐anion stacks, as shown by the broad absorption bands in near‐IR spectra. These photosensitive NDIs also showed crystal bending upon photoirradiation, which may be associated with a change in the intermolecular distance of the NDI stacks by the formation of monomeric radical anions, mixed‐valence stacks, and radical‐anion stacks.  相似文献   

14.
The controlled self‐assembly of well‐defined and spatially ordered π‐systems has attracted considerable interest because of their potential applications in organic electronics. An important contemporary pursuit relates to the investigation of charge transport across noncovalently coupled components in a stepwise fashion. Dynamic oligorotaxanes, prepared by template‐directed methods, provide a scaffold for directing the construction of monodisperse one‐dimensional assemblies in which the functional units communicate electronically through‐space by way of π‐orbital interactions. Reported herein is a series of oligorotaxanes containing one, two, three and four naphthalene diimide (NDI) redox‐active units, which have been shown by cyclic voltammetry, and by EPR and ENDOR spectroscopies, to share electrons across the NDI stacks. Thermally driven motions between the neighboring NDI units in the oligorotaxanes influence the passage of electrons through the NDI stacks in a manner reminiscent of the conformationally gated charge transfer observed in DNA.  相似文献   

15.
Based on quantum chemistry calculations combined with the Marcus–Hush electron transfer theory, we investigated the charge‐transport properties of oligothiophenes (nTs) and oligopyrroles (nPs) (n=6, 7, 8) as potential p‐ or n‐type organic semiconductor materials. The results of our calculations indicate that 1) the nPs show intrinsic hole mobilities as high as or even higher than those of nTs, and 2) the vertical ionization potentials (VIPs) of the nPs are about 0.6–0.7 eV smaller than the corresponding VIPs of the nTs. Based on their charge‐transport ability and hole‐injection efficiency, the nPs have potential as p‐type organic semiconducting materials. Furthermore, it was also found that the maximum values of the electron‐transfer mobility for the nTs are larger by one‐to‐two orders of magnitude than the corresponding maximum values of hole‐transfer mobility, which suggests that the nTs have the potential to be developed as promising n‐type organic semiconducting materials owing to their electron mobility.  相似文献   

16.
Herein, we describe the molecular electronic structure, optical, and charge‐transport properties of anthracene derivatives computationally using density functional theory to understand the factors responsible for the improved efficiency and stability of organic light‐emitting diodes (OLEDs) with triphenylamine (TPA)‐substituted anthracene derivatives. The high performance of OLEDs with TPA‐substituted anthracene is revealed to derive from three original features in comparison with aryl‐substituted anthracene derivatives: 1) the HOMO and LUMO are localized separately on TPA and anthracene moieties, respectively, which leads to better stability of the OLEDs due to the more stable cation of TPA under a hole majority‐carrier environment; 2) the more balanceable hole and electron transport together with the easier hole injection leads to a larger rate of hole–electron recombination, which corresponds to the higher electroluminescence efficiency; and 3) the increasing reorganization energy for both hole and electron transport and the higher HOMO energy level provide a stable potential well for hole trapping, and then trapped holes induce a built‐in electric field to prompt the balance of charge‐carrier injection.  相似文献   

17.
Biomolecule-nanoparticle hybrid systems for bioelectronic applications   总被引:1,自引:0,他引:1  
Recent advances in nanobiotechnology involve the use of biomolecule-nanoparticle (NP) hybrid systems for bioelectronic applications. This is exemplified by the electrical contacting of redox enzymes by means of Au-NPs. The enzymes, glucose oxidase, GOx, and glucose dehydrogenase, GDH, are electrically contacted with the electrodes by the reconstitution of the corresponding apo-proteins on flavin adenine dinucleotide (FAD) or pyrroloquinoline quinone (PQQ)-functionalized Au-NPs (1.4 nm) associated with electrodes, respectively. Similarly, Au-NPs integrated into polyaniline in a micro-rod configuration associated with electrodes provides a high surface area matrix with superior charge transport properties for the effective electrical contacting of GOx with the electrode. A different application of biomolecule-Au-NP hybrids for bioelectronics involves the use of Au-NPs as carriers for a nucleic acid that is composed of hemin/G-quadruplex DNAzyme units and a detecting segment complementary to the analyte DNA. The functionalized Au-NPs are employed for the amplified DNA detection, and for the analysis of telomerase activity in cancer cells, using chemiluminescence as a readout signal. Biomolecule-semiconductor NP hybrid systems are used for the development of photoelectrochemical sensors and optoelectronic systems. A hybrid system consisting of acetylcholine esterase (AChE)/CdS-NPs is immobilized in a monolayer configuration on an electrode. The photocurrent generated by the system in the presence of thioacetylcholine as substrate provides a means to probe the AChE activity. The blocking of the photocurrent by 1,5-bis(4-allyldimethyl ammonium phenyl)pentane-3-one dibromide as nerve gas analog enables the photoelectrochemical analysis of AChE inhibitors. Also, the association CdS-NP/double-stranded DNA hybrid systems with a Au-electrode, and the intercalation of methylene blue into the double-stranded DNA, generates an organized nanostructure of switchable photoelectrochemical functions. Electrochemical reduction of the intercalator to the leuco form, -0.4 V vs. SCE, results in a cathodic photocurrent as a result of the transfer of photoexcited conduction-band electrons to O(2) and the transport of electrons to the valance-band holes by the reduced intercalator units. The oxidation of the intercalator, E 0 V (vs. SCE), yields in the presence of triethanolamine, TEOA, as sacrificial electron donor, an anodic photocurrent by the transport of conduction-band electrons, through intercalator units, to the electrodes, and filling the valance-band holes with electrons supplied by TEOA. The systems reveal potential-switchable directions of the photocurrents, and reveal logic gate functions.  相似文献   

18.
Natural light-harvesting (LH) systems can divide identical dyes into unequal aggregate states, thereby achieving intelligent “allocation of labor”. From a synthetic point of view, the construction of such kinds of unequal and integrated systems without the help of proteinaceous scaffolding is challenging. Here, we show that four octatetrayne-bridged ortho-perylene diimide (PDI) dyads ( POP s) self-assemble into a quadruple assembly (POP)4 both in solution and in the solid state. The two identical PDI units in each POP are compartmentalized into weakly coupled PDIs (P520) and closely stacked PDIs (P550) in (POP)4 . The two extreme pools of PDI chromophores were unambiguously confirmed by single-crystal X-ray crystallography and NMR spectroscopy. To interpret the formation of the discrete quadruple assembly, we also developed a two-step cooperative model. Quantum-chemical calculations indicate the existence of multiple couplings within and across P520 and P550, which can satisfactorily describe the photophysical properties of the unequal quadruple assembly. This finding is expected to help advance the rational design of dye stacks to emulate functions of natural LH systems.  相似文献   

19.
Synthesis and characterization of a series of rylene-diimide substituted hexaphenylbenzenes (HPBs) is presented. The direct connection of the rylene-diimide units to the HPBs via the imide-N-position without any linkers as well as the use of naphthalene-diimides (NDIs) next to perylene-diimides (PDIs) is unprecedented. While mono-substituted products were obtained by imidization reactions with amino-HPB and the respective rylene-monoimides, key step for the formation of tri- and hexa-substituted HPBs is the Co-catalysed cyclotrimerization. Particular emphasis for physic-chemical characterization was on to the number of NDIs/PDIs per HPB and the overall substitution patterns. Lastly, Scholl oxidation conditions were applied to all HPB systems to generate the corresponding hexa-peri-hexabenzocoronenes (HBCs). Importantly, the efficiency of the transformation strongly depends on the number of NDIs/PDIs. While three rylene-diimide units already hinder the Scholl reaction, the successful synthesis of mono-substituted HBCs is possible.  相似文献   

20.
Fe3+/V5+/TiO2复合纳米微粒光催化性能的研究   总被引:29,自引:1,他引:29  
采用溶胶凝胶法制备了Fe^3 /V^5 /TiO2复合纳米微粒作为光催化剂。光降解反应结果表明,其掺杂催化剂Fe^3 /V^5 /TiO2的光催化活性明显提高。光电化学研究显示,铁离子可以成为电荷陷阱,促进空穴的界面传递反应。适量钒离子掺杂使TiO2电极的光电流升高,导带中电子浓度的增大,加快了界面的电子传递反应。共掺杂催化剂中,Fe^3 、V^5 分别提供了空穴与电子的陷阱,同时加快了电子与空穴的界面传递反应,从 更有效地提高光催化活性。双组份共掺杂为提高TiO2光催化活性提供新的途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号