首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
A catalytic methodology for the enantioselective addition of alkylzirconium reagents to aliphatic aldehydes is reported here. The versatile and readily accessible chiral Ph-BINMOL ligand, in the presence of Ti(OiPr)4 and a zinc salt, facilitates the reaction, which proceeds under mild conditions and is compatible with functionalized nucleophiles. The alkylzirconium reagents are conveniently generated in situ by hydrozirconation of alkenes with the Schwartz reagent. This work is a continuation of our previous work on aromatic aldehydes.  相似文献   

3.
Gold had been considered to be an extremely inert metal, but recently it was found that nanometer-sized gold particles on metal-oxide supports acted as catalysts for simple organic reactions, such as oxidation and hydrogenation, even at or below room temperature. Herein, we report that gold nanoparticles (AuNPs) of zero oxidation state (Au0) are catalytically active for a C--C bond-forming reaction, the cyanosilylation of aldehydes. The AuNP-catalyzed cyanosilylation proceeded smoothly at room temperature with 0.2 wt % loading of AuNPs. The reactions of aromatic aldehydes were almost quantitative, except for benzaldehyde derivatives containing the electron-withdrawing NO2 group, and alpha,beta-unsaturated aromatic aldehydes were the most reactive substrates. The reactions also went smoothly for aliphatic aldehydes. Mechanistic studies indicated that the reactions proceeded both homogeneously and heterogeneously: homogeneous catalysis by leached gold species and heterogeneous catalysis by the adsorption of the reactants (aldehydes and trimethylsilyl cyanide) onto AuNPs. The ratio of homogeneous and heterogeneous catalysis was estimated to be approximately 4:1.  相似文献   

4.
Aluminum phthalocyanine (AlPc) in the presence of Ph3PO acts as a highly effective catalyst for cyanosilylation of various aldehydes to the corresponding cyanohydrin trimethylsilyl ethers. The reaction proceeds smoothly with 5 mol% catalyst loading at room temperature, giving up to 96% yield. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
The first one‐pot enantioselective oxidative coupling of cyclic benzylic ethers with aldehydes has been developed. A variety of benzylic ethers were transformed into the corresponding oxygen heterocycles with high enantioselectivity. Mechanistic experiments were conducted to determine the nature of the reaction intermediates. The application of this strategy to coupling reactions with other nucleophiles besides aldehydes was also explored.  相似文献   

6.
A series of new germylene compounds has been synthesized offering systematic variation in the σ‐ and π‐capabilities of the α‐substituent and differing levels of reactivity towards E?H bond activation (E=H, B, C, N, Si, Ge). Chloride metathesis utilizing [(terphenyl)GeCl] proves to be an effective synthetic route to complexes of the type [(terphenyl)Ge(ERn)] ( 1 – 6 : ERn=NHDipp, CH(SiMe3)2, P(SiMe3)2, Si(SiMe3)3 or B(NDippCH)2; terphenyl=C6H3Mes2‐2,6=ArMes or C6H3Dipp2‐2,6=ArDipp; Dipp=C6H3iPr2‐2,6, Mes=C6H2Me3‐2,4,6), while the related complex [{(Me3Si)2N}Ge{B(NDippCH)2}] ( 8 ) can be accessed by an amide/boryl exchange route. Metrical parameters have been probed by X‐ray crystallography, and are consistent with widening angles at the metal centre as more bulky and/or more electropositive substituents are employed. Thus, the widest germylene units (θ>110°) are found to be associated with strongly σ‐donating boryl or silyl ancillary donors. HOMO–LUMO gaps for the new germylene complexes have been appraised by DFT calculations. The aryl(boryl)‐germylene system [ArMesGe{B(NDippCH)2}] ( 6 ‐Mes), which features a wide C‐Ge‐B angle (110.4(1)°) and (albeit relatively weak) ancillary π‐acceptor capabilities, has the smallest HOMO–LUMO gap (119 kJ mol?1). These features result in 6 ‐Mes being remarkably reactive, undergoing facile intramolecular C?H activation involving one of the mesityl ortho‐methyl groups. The related aryl(silyl)‐germylene system, [ArMesGe{Si(SiMe3)3}] ( 5 ‐Mes) has a marginally wider HOMO–LUMO gap (134 kJ mol?1), rendering it less labile towards decomposition, yet reactive enough to oxidatively cleave H2 and NH3 to give the corresponding dihydride and (amido)hydride. Mixed aryl/alkyl, aryl/amido and aryl/phosphido complexes are unreactive, but amido/boryl complex 8 is competent for the activation of E?H bonds (E=H, B, Si) to give hydrido, boryl and silyl products. The results of these reactivity studies imply that the use of the very strongly σ‐donating boryl or silyl substituents is an effective strategy for rendering metallylene complexes competent for E?H bond activation.  相似文献   

7.
8.
9.
Direct iodination of several reactive aromatic compounds like hydroxy substituted acetophenones and aldehydes with pyridinium iodochloride (PyICl) proceeded smoothly to afford the corresponding aromatic iodides in good to excellent yield. Pyridinium iodochloride has been found to be an efficient solid iodinating reagent with no hazardous effect and it can be handled safely.  相似文献   

10.
In the presence of [Ru(terpyridine)(2,6‐pyridinedicarboxylate)], aliphatic and benzylic alcohols are oxidized to the corresponding aldehydes or ketones with high selectivity by using hydrogen peroxide as the oxidant. There is no need for the addition of co‐catalysts or organic solvents. By applying an optimized reaction protocol, high catalyst productivity (turnover number>10 000) and activity (turnover frequency up to 14 800 h?1) has been achieved.  相似文献   

11.
12.
13.
The asymmetric addition of Me2Zn to aldehydes is very slow and mostly gives low ee values. Previously, we reported the synthesis of a fluorous chiral ligand, (4R,5S,α′R)‐2,2‐dimethyl‐α,α,α′‐tris(perfluorooctyl)‐2,3‐dioxolane‐4,5‐dimethanol ( 1 a ), derived from tartarate as a chiral pool. Ligand 1 a showed high activity toward the addition of Me2Zn to aldehydes with high enantiomeric excess. However, the very high content of fluorine makes 1 a difficult to dissolve in common solvents; hence, much solvent is required, which limits its use. This report describes the modification of 1 a by replacing either the perfluorooctyl groups with shorter perfluoroalkyl ones or the acetone ketal part with cyclohexanone ketal. The perfluorobutyl analogue 1 c is much more soluble than 1 a and shows comparable asymmetric induction toward the addition of Me2Zn to aldehydes. Furthermore, 1 c has a much lower molecular weight than 1 a . This means that 1 c is used in smaller amounts (weight) than 1 a . The cyclohexanone ketal analogue 1 d is more soluble than 1 a and more easily synthesized owing to its high solubility and ease of crystallization. Ligand 1 d showed much higher asymmetric induction toward cyclohexanecarbaldehyde, a branched aldehyde, than 1 a . Thus, 1 a was modified into ligands with higher performance.  相似文献   

14.
The new coordination polymers (CPs) [Zn(μ-1κO1:1κO2-L)(H2O)2]n·n(H2O) (1) and [Cd(μ4-1κO1O2:2κN:3,4κO3-L)(H2O)]n·n(H2O) (2) are reported, being prepared by the solvothermal reactions of 5-{(pyren-4-ylmethyl)amino}isophthalic acid (H2L) with Zn(NO3)2.6H2O or Cd(NO3)2.4H2O, respectively. They were synthesized in a basic ethanolic medium or a DMF:H2O mixture, respectively. These compounds were characterized by single-crystal X-ray diffraction, FTIR spectroscopy, thermogravimetric and elemental analysis. The single-crystal X-ray diffraction analysis revealed that compound 1 is a one dimensional linear coordination polymer, whereas 2 presents a two dimensional network. In both compounds, the coordinating ligand (L2−) is twisted due to the rotation of the pyrene ring around the CH2-NH bond. In compound 1, the Zn(II) metal ion has a tetrahedral geometry, whereas, in 2, the dinuclear [Cd2(COO)2] moiety acts as a secondary building unit and the Cd(II) ion possesses a distorted octahedral geometry. Recently, several CPs have been explored for the cyanosilylation reaction under conventional conditions, but microwave-assisted cyanosilylation of aldehydes catalyzed by CPs has not yet been well studied. Thus, we have tested the solvent-free microwave-assisted cyanosilylation reactions of different aldehydes, with trimethylsilyl cyanide, using our synthesized compounds, which behave as highly active heterogeneous catalysts. The coordination polymer 1 is more effective than 2, conceivably due to the higher Lewis acidity of the Zn(II) than the Cd(II) center and to a higher accessibility of the metal centers in the former framework. We have also checked the heterogeneity and recyclability of these coordination polymers, showing that they remain active at least after four recyclings.  相似文献   

15.
An efficient and straightforward method for oxidation of the benzylic alcohols to the corresponding aldehydes and ketones has been accomplished using triphenylmethylphosphonium dichromate (MTPPD) under solvent-free conditions with high chemoselectivity. The reaction is fast with good yields and straightforward workup.  相似文献   

16.
17.
Commercially available SnAP (stannyl amine protocol) reagents allow the transformation of aldehydes and ketones into a variety of N‐unprotected heterocycles. By identifying new ligands and reaction conditions, a robust catalytic variant that expands the substrate scope to previously inaccessible heteroaromatic substrates and new substitution patterns was realized. It also establishes the basis for a catalytic enantioselective process through the use of chiral ligands.  相似文献   

18.
Secondary and tertiary amine derivatives are very important in chemical and pharmaceutical industries. The N-alkylation of amines with aldehydes is a proper way to form secondary and tertiary amines. However, the traditional catalyst systems for this transformation bring a series of problems such as narrow substrate scope, challenges of difficult catalyst preparation and metal residues and toxicity. Herein an efficient way to perform N-alkylation of amines with aldehydes was described which used a molecular Mo oxide catalyst. In this pathway, various aldehyde and amine derivatives were successfully converted to the corresponding secondary and tertiary amines with high selectivity and efficiency. In addition, the catalyst was easy to prepare, and could be recycled six times without appreciable loss of conversion. Finally, the reaction mechanism was presented based on the observation of the possible intermediates and control experiments.  相似文献   

19.
20.
Nickel-catalyzed ipso-borylations and silylations of aldehydes are described for the first time. The new functional-group interconversion protocol is characterized by its scalability, functional-group tolerance and wide substrate scope, including examples of late-stage functionalization of complex molecules. The key for the successful reaction outcome is the use of a ketone as a hydride acceptor that intercepts the nickel hydride to undergo a reductive pathway, thus allowing formation of the desired C−B and C−Si bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号