首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metal–support interactions (MSIs) and particle size play important roles in catalytic reactions. For the first time, silver nanoparticles supported on CeO2‐SBA‐15 supports are reported that possess tunable particle size and MSIs, as prepared by microwave (MW) irradiation, owing to strong charge polarization of CeO2 clusters (i.e., MW absorption). Characterizations, including TEM, X‐ray photoelectron spectroscopy, and extended X‐ray absorption fine structure, were carried out to disclose the influence of CeO2 contents on the Ag particle size, MSI effect between Ag nanoparticles and CeO2‐SBA‐15 supports, and the strong MW absorption of CeO2 clusters that contribute to the MSIs during Ag deposition. The Ag particle sizes were controllably tuned from 1.9 to 3.9 nm by changing the loading amounts of CeO2 from 0.5 to 2.0 wt %. The Ag nanoparticle size was predominantly responsible for the high turnover frequency (TOF) of 0.41 min?1 in ammonia borane dehydrogenation, whereas both particle size and MSIs contributed to the high TOF of 555 min?1 in 4‐nitrophenol reduction for Ag/0.5CeO2‐SBA‐15, which were twice as large as those of Ag/SBA‐15 without CeO2 and Ag/CeO2‐SBA‐15 prepared by conventional oil‐bath heating.  相似文献   

2.
3.
Silanol groups on a silica surface affect the activity of immobilized catalysts because they can influence the hydrophilicity/hydrophobicity, matter transfer, or even transition state in a catalytic reaction. Previously, these silanol groups have usually been passivated by using surface‐passivation reagents, such as alkoxysilanes, bis‐silylamine reagents, chlorosilanes, etc., and surface passivation has typically been found in mesoporous‐silicas‐supported molecular catalysts and heteroatomic catalysts. However, this property has rarely been reported in mesoporous‐silicas‐supported metal‐nanoparticle catalysts. Herein, we prepared an almost‐superhydrophobic SBA‐15‐supported gold‐nanoparticle catalyst by using surface passivation, in which the catalytic activity increased more than 14 times for the reduction of nitrobenzene compared with non‐passivated SBA‐15. In addition, this catalyst can selectively catalyze hydrophobic molecules under our experimental conditions, owing to its high (almost superhydrophobic) hydrophobic properties.  相似文献   

4.
A new and simple procedure to enhance the fluorescence of analytes on the surfaces of a solid substrate is demonstrated based on Ag@SiO2 nanoparticles. Two kinds of silver–silica core–shell nanoparticles with shell thicknesses of around 3 and 15 nm have been prepared and used as enhancing agents, respectively. By simply pipetting drops of the enhancing agents onto substrate surfaces with Rose Bengal monolayers, an enhancement of about 27 times, compared with the control sample, is achieved by using the Ag@SiO2 nanoparticles with shells of about 3 nm, whereas an enhancement of around 11.7 times is obtained when using those with thicker shells. The effects of shell thickness and surface density of the enhancing agents on the enhancement have been investigated experimentally. The results show that this method can be potentially helpful in fluorescence‐based surface analysis.  相似文献   

5.
6.
The size and shape of it : The optical properties of Ag nanoplates can be precisely tuned in a wide range through a UV‐light‐induced reconstruction process in which the morphology of the nanoparticles is changed from thin triangular plates to thick round plates (see picture). This unconventional “backward tuning” strategy is a practical route to stable silver nanoplates that display a wide range of plasmon wavelengths.

  相似文献   


7.
Silver nanoparticles (NPs) ranging in size from 40 to 100 nm were prepared in high yield by using an improved seed‐mediated method. The homogeneous Ag NPs were used as building blocks for 2D assembled Ag NP arrays by using an oil/water interface. A close‐packed 2D array of Ag NPs was fabricated by using packing molecules (3‐mercaptopropyltrimethoxysilane) to control the interparticle spacing. The homogeneous 2D Ag NP array exhibited a strong quadrupolar cooperative plasmon mode resonance and a dipolar red‐shift relative to individual Ag NPs suspended in solution. A well‐arranged 2D Ag NP array was embedded in polydimethylsiloxane film and, with biaxial stretching to control the interparticle distance, concomitant variations of the quadrupolar and dipolar couplings were observed. As the interparticle distance increased, the intensity of the quadrupolar cooperative plasmon mode resonance decreased and dipolar coupling completely disappeared. The local electric field of the 2D Ag NP array was calculated by using finite difference time domain simulation and qualitatively showed agreement with the experimental measurements.  相似文献   

8.
The thermodynamics and kinetics of the chemical and electrochemical charging of a catalyst surface are very important to understand its applicability as a catalyst material, particularly in redox catalysis. Through the present study, we hereby communicate the results obtained from our detailed investigations related to the effect of chemical charging on the plasmonic behavior of silver metal nanoparticles (Ag MNPs) as redox catalysts. Two different batches of Ag MNPs were prepared through thermally assisted chemical reduction of silver ions. The difference in these batches was the use or not of citrate‐capped cadmium selenide quantum dots (Q‐CdSe) for the reduction of solution‐phase silver ions to their colloidal plasmonic phase. The charge on the surfaces of the Ag MNPs was varied by the chemical electron injection method by using BH4? ions from a NaBH4 solution. The processes of charging and discharging were monitored by using UV/Vis absorption spectroscopy. The impact of the concentration of the reductant on the charging and discharging processes was also investigated. The Ag MNPs were also tested for their voltammetric response, wherein it was observed that it was more difficult to oxidize the Ag MNPs prepared with Q‐CdSe seeds than to oxidize Ag MNPs prepared without Q‐CdSe particles. Our results demonstrate that Q‐CdSe seeds not only enhance the redox catalytic activity of Ag MNPs but also provide stability towards polarization of their plasmonic behavior.  相似文献   

9.
Gold particles supported on tin(IV) oxide (0.2 wt % Au/SnO2) were modified with copper and silver by the multistep photodeposition method. Absorption around λ=550 nm, attributed to surface plasmon resonance (SPR) of Au, gradually shifted to longer wavelengths on modification with Cu and finally reached λ=620 nm at 0.8 wt % Cu. On the other hand, the absorption shifted to shorter wavelength with increasing amount of Ag and reached λ=450 nm at 0.8 wt % Ag. These Cu‐ and Ag‐modified 0.2 wt % Au/SnO2 materials (Cu‐Au/SnO2 and Ag‐Au/SnO2) and 1.0 wt % Au/SnO2 were used for mineralization of formic acid to carbon dioxide in aqueous suspension under irradiation with visible light from a xenon lamp and three kinds of light‐emitting diodes with different wavelengths. The reaction rates for the mineralization of formic acid over these materials depend on the wavelength of light. Apparent quantum efficiencies of Cu‐Au/SnO2, Au/SnO2, and Ag‐Au/SnO2 reached 5.5 % at 625 nm, 5.8 % at 525 nm, and 5.1 % at 450 nm, respectively. These photocatalysts can also be used for selective oxidation of alcohols to corresponding carbonyl compounds in aqueous solution under visible‐light irradiation. Broad responses to visible light in formic acid mineralization and selective alcohol oxidation were achieved when the three materials were used simultaneously.  相似文献   

10.
With new photocatalysts of gold nanoparticles supported on zeolite supports (Au/zeolite), oxidation of benzyl alcohol and its derivatives into the corresponding aldehydes can proceed well with a high selectivity (99 %) under visible‐light irradiation at ambient temperature. Au/zeolite photocatalysts were characterised by UV/Vis, X‐ray photoelectron spectroscopy (XPS), TEM, XRD, energy‐dispersive spectroscopy (EDS), Brauner–Emmet–Teller (BET) analyses, IR and Raman techniques. The surface plasmon resonance (SPR) effect of gold nanoparticles, the adsorption capability of zeolite supports and the molecular polarities of aromatic alcohols were demonstrated to have an essential correlation with the photocatalytic performances. In addition, the effects of light intensity, wavelength range and the role of molecular oxygen were investigated in detail. The kinetic study indicated that the visible‐light irradiation required much less apparent activation energy for photooxidation compared with thermal reaction. Based on the characterisation data and the photocatalytic performances, we proposed a possible photooxidation mechanism.  相似文献   

11.
Platinum nanoparticles supported on graphite nanofibers (GNFs) were prepared by microwave assistant heating polyol process. TEM images showed that microwave prepared Pt nanoparticles supported on GNFs were small and uniform, and the average diameter was about 3.4 nm. Cyclic voltammetric test showed that Pt/GNFs exhibited very high electrocatalytic activity for methanol oxidation.  相似文献   

12.
Layered nickel silicate nanoflowers (NSFs) with a hierarchical nanostructure have been successfully fabricated by a template‐free solvothermal method. The as‐prepared nanoflowers were composed of many interconnected edge‐curving lamellae with a thickness of about 15 nm and had a high specific surface area (279 m2 g?1) and large pore volume (0.67 cm3 g?1). The highly dispersed small silver nanoparticles (AgNPs) were immobilized on the surface of NSFs through the in situ reduction of Ag+ by Sn2+. The AgNP/NSF nanocomposites showed a high performance in the catalytic reduction of 4‐nitrophenol. In particular, there was no visible decrease in the catalytic activity of the reused catalysts even after being recycled four times. The as‐prepared AgNP/NSF nanocomposites might be an excellent catalyst owing to their availability, formability, chemical and thermal stability, and high specific surface area.  相似文献   

13.
A straightforward aqueous synthesis of MoO3?x nanoparticles at room temperature was developed by using (NH4)6Mo7O24?4 H2O and MoCl5 as precursors in the absence of reductants, inert gas, and organic solvents. SEM and TEM images indicate the as‐prepared products are nanoparticles with diameters of 90–180 nm. The diffuse reflectance UV‐visible‐near‐IR spectra of the samples indicate localized surface plasmon resonance (LSPR) properties generated by the introduction of oxygen vacancies. Owing to its strong plasmonic absorption in the visible‐light and near‐infrared region, such nanostructures exhibit an enhancement of activity toward visible‐light catalytic hydrogen generation. MoO3?x nanoparticles synthesized with a molar ratio of MoVI/MoV 1:1 show the highest yield of H2 evolution. The cycling catalytic performance has been investigated to indicate the structural and chemical stability of the as‐prepared plasmonic MoO3?x nanoparticles, which reveals its potential application in visible‐light catalytic hydrogen production.  相似文献   

14.
Layered protonated titanate nanosheets (LPTNs) loaded with silver nanoparticles are prepared by a simple one‐pot hydrothermal route in silver‐ammonia solution. The as‐synthesized Ag‐loaded LPTNs possess large specific surface area. The Ag nanoparticles are highly dispersed on the surface of the LPTNs. They have negligible effects on the crystal structure, crystallinity, and surface area of the LPTNs but result in considerable enhancement of visible‐light absorption and in a red‐shift of the band gap for the LPTNs. The Ag‐loaded LPTNs show enhanced photocatalytic activity for both liquid‐ and gas‐phase reactions under visible‐light irradiation. Moreover, the photocatalytic activity first increases gradually with increasing Ag loading content, and then decreases after maximizing at an optimal Ag content. At the Ag loading content of 2.87 mol % and 1.57 mol %, the Ag‐loaded LPTNs exhibit the highest visible‐light photocatalytic activity for degradation of rhodamine B in water and mineralization of benzene in air, respectively. An alternative possible mechanism for the enhancement of the visible‐light photocatalytic activity is also proposed.  相似文献   

15.
Silica‐supported AgNO3 (AgNO3–SiO2) catalyzes the dearomatizing spirocyclization of alkyne‐tethered aromatics far more effectively than the analogous unsupported reagent; in many cases, reactions which fail using unsupported AgNO3 proceed effectively with AgNO3–SiO2. Mechanistic studies indicate that this is a consequence of silver nanoparticle formation on the silica surface combined with a synergistic effect caused by the silica support itself. The remarkable ease with which the reagent can be prepared and used is likely to be of much synthetic importance, in particular, by making nanoparticle catalysis more accessible to non‐specialists.  相似文献   

16.
17.
Developing gold nanoparticles (AuNPs) with well‐designed functionality is highly desirable for boosting the performance and versatility of inorganic–organic hybrid materials. In an attempt to achieve ion recognition with specific signal expressions, we present here 4‐piperazinyl‐1,8‐naphthalimide‐functionalized AuNPs for the realization of quantitative recognition of FeIII ions with dual (colorimetric and fluorescent) output. The research takes advantage of 1) quantity‐controlled chelation‐mode transformation of the piperazinyl moiety on the AuNPs towards FeIII, thereby resulting in an aggregation–dispersion conversion of the AuNPs in solution, and 2) photoinduced electron transfer of a naphthaimide fluorophore on the AuNPs, thus leading to reversible absorption and emission changes. The functional AuNPs are also responsive to pH variations. This strategy for realizing the aggregation–dispersion conversion of AuNPs with returnable signal output might exhibit application potential for advanced nanoscale chemosensors.  相似文献   

18.
Bimetallic nanoparticles often turn out to be superior to the corresponding monometallic systems with respect to their catalytic properties. To study such effects for the methanol decomposition reaction, model catalysts were prepared by physical vapor deposition of Pd and Co under ultrahigh‐vacuum (UHV) conditions. Monometallic Pd and Co particles as well as CoPd core–shell particles were generated on an epitaxial alumina film grown on NiAl(110). The interaction with methanol is examined by temperature‐programmed desorption of methanol and carbon monoxide and by X‐ray photoelectron spectroscopy. The decomposition of methanol proceeds in two reaction pathways independent of the particle composition: complete dehydrogenation towards carbon monoxide and hydrogen, and C? O bond scission yielding carbon deposits. Pd is the most active material studied here. The relative importance of the two channels varies for the different particle systems: on Pd dehydrogenation is preferred, whereas the C? O bond cleavage is more pronounced on Co. The bimetallic clusters show a moderate performance for both pathways. Carbon deposition poisons the model catalysts by blocking the adsorption sites for methoxide, which is the first intermediate product during methanol decomposition. In particular on Co, large amounts of carbon deposits can also be caused by dissociation of the final product of the dehydrogenation pathway, carbon monoxide. A comparison with the results of methanol decomposition on Co, Pd, and CoPd catalysts in continuous‐flow reactors demonstrates that the findings of the present UHV study are relevant for catalytic performance under high‐pressure conditions.  相似文献   

19.
Surface modification of mesoporous SBA‐15 silica generated a hydrophobic environment for a molybdenum diamine (Mo‐diamine) precursor solution, enabling direct growth of isolated 1.9±0.4 nm α‐MoC1?x nanoparticles (NPs) inside the pores of the support. The resulting NP catalysts are bifunctional, and compared to bulk α‐MoC1?x and β‐Mo2C, the NPs exhibit a greater acid‐site:H‐site ratio and a fraction of stronger acid sites. The greater acid‐site:H‐site ratio results in higher decarbonylation (DCO) selectivity during acetic acid hydrodeoxygenation (HDO) reactions, and the stronger acid sites lead to higher activity and ketonization (KET) selectivity at high temperatures. The hard‐templating synthetic method could be a versatile route toward carbide NPs of varying size, composition, and phase, on a range of mesoporous oxide supports.  相似文献   

20.
Supported noble bimetallic nanomaterials have attracted great interest owing to their applications in catalysis. Herein, polystyrene‐supported Ag@AgAu bimetallic nanocomposites were synthesized by using a seed‐growth route. The size and degree of coverage of the Ag@AgAu NPs could be controlled by changing the experimental parameters. SEM, TEM, STEM, EDS, and XPS analysis was used to characterize the morphology, structure, and composition of these nanocomposites. We found that the bimetallic nanoparticles on the polystyrene beads had a core–shell structure that was comprised of a Ag core and a AgAu alloy shell. The optical properties of the nanocomposites were also studied by UV/Vis/NIR spectroscopy, which indicated that the localized surface plasmon resonance (LSPR) absorptions of the nanocomposites could be tailored over a large scale from 450 nm to 950 nm. The catalytic properties of the nanocomposites were studied by using the reduction of 4‐nitrophenol (4‐NP) by NaBH4 as a model system. The results showed that the catalytic activity of the polystyrene‐supported Ag@AgAu bimetallic nanocomposites was remarkably superior to that of polystyrene‐supported monometallic Ag and Au nanocomposites with the same nanoparticle size. In addition, an investigation of the recycling catalytic activity of the PS‐Ag@AgAu nanocomposites revealed that the catalyst possessed good stability. The enhancement of the catalytic activity was proposed to be due to the ligand and strain effects between Ag and Au.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号