首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the effect of hydrostatic pressure on both the intersubband optical absorption coefficients and the refractive index changes is studied for typical GaAs/Al x  Ga1?x As cubic quantum dot. We use analytical expressions for the linear and third-order nonlinear intersubband absorption coefficients and refractive index changes obtained by the compact-density matrix formalism. The linear, third-order nonlinear, and total intersubband absorption coefficients and refractive index changes are calculated at different pressures as a function of the photon energy with known values of box length (L), the incident optical intensity (I), and Al concentration (x). According to the results obtained from the present work, we have found that the pressure plays an important role in the intersubband optical absorption coefficient and refractive index changes in a cubic quantum dot.  相似文献   

2.
F. Ungan 《Journal of luminescence》2011,131(11):2237-2243
In the present work, the changes in the intersubband optical absorption coefficients and the refractive index in a modulation-doped quantum well have been investigated theoretically. Within the envelope function approach and the effective mass approximation, the electronic structure of the quantum well is calculated from the self-consistent numerical solution of the coupled Schrödinger-Poisson equations. The analytical expressions of optical properties are obtained by using the compact density-matrix approach. The numerical results GaAs/AlxGa1−xAs are presented for typical modulation-doped quantum well system. The linear, third-order nonlinear and total absorption and refractive index changes depending on the doping concentration are investigated as a function of the incident optical intensity and structure parameters, such as quantum well width and stoichiometric ratio. The results show that the doping concentration, the structure parameters and the incident optical intensity have a great effect on the optical characteristics of these structures.  相似文献   

3.
In this paper, the effect of hydrostatic pressure on the intersubband optical absorption and the refractive index changes in a GaAs/Ga1−xAlxAs ridge quantum wire are studied. We use analytical expressions for the linear and third-order nonlinear intersubband absorption coefficients and refractive index changes obtained by the compact-density matrix formalism. The linear, third-order nonlinear, and total intersubband absorption coefficients and refractive index changes are investigated at different pressures as a function of photon energy with known values of width wire (bb), the incident optical intensity (II), and the angle θθ. According to the results obtained from the present work, we have found that the pressure plays an important role in the intersubband optical absorption coefficients and refractive index changes in a V-groove quantum wire.  相似文献   

4.
The linear and the third-order nonlinear optical absorption coefficients and refractive index changes in a modulation-doped asymmetric double quantum well are studied theoretically. The electron energy levels and the envelope wave functions in this structure are calculated by the Schrödinger and Poisson equations self-consistently in the effective mass approximation. The analytical expressions of optical properties are obtained by using the compact density-matrix approach. In this regard, the linear, nonlinear and total intersubband absorption coefficients and refractive index changes are investigated as a function of right-well width (Lw2) of asymmetric double quantum well. Our results show that the total absorption coefficients and refractive index changes shift toward higher energies as the right-well width decreases. In addition, the total optical absorption coefficients and refractive index changes is strongly dependent on the incident optical intensity.  相似文献   

5.
In this paper, we first obtain an analytic relation for studying the position-dependent effective mass in a GaAs/AlxGa1−xAs cubic quantum dot. Then, the effect of position-dependent effective mass on the intersubband optical absorption coefficient and the refractive index change in the quantum dot are studied. Our numerical calculations are performed using both a constant effective mass and the position-dependent effective mass. We calculate the linear, nonlinear and total intersubband absorption coefficient and refractive index change as a function of the incident optical intensity and structural parameters such as dot length. The results obtained from the present work show that spatially varying electron effective mass plays an important role in the intersubband optical absorption coefficient and refractive index change in a cubic quantum dot.  相似文献   

6.
Considering the strong built-in electric field (BEF) effects due to the spontaneous and piezoelectric polarizations, the intersubband optical absorptions and refractive index changes for an InxGa1-xN/AlyGa1-yN strained single quantum well are studied theoretically within the framework of the density matrix method and effective-mass approximation. The linear, third-order nonlinear and total absorption coefficients and refractive index changes are calculated as a function of the incident optical intensity and photon energy. Our results show that both the incident optical intensity and the strong BEF have great influence on the total absorptions and refractive index cllanges. The results are significant for designing some important photodetectors and the photonic crystal devices with adjustable photonic band structures.  相似文献   

7.
In this study, both the intersubband optical absorption coefficients and the refractive index changes as dependent on the magnetic field are calculated in square and graded quantum wells. Our results show that the position and the magnitude of the linear and total absorption coefficients and refractive index changes depend on the magnetic field strength and the shape of potential. The incident optical intensity has a great effect on the total absorption and refractive index changes.  相似文献   

8.
Simultaneous effects of an on-center hydrogenic impurity and band edge non-parabolicity on intersubband optical absorption coefficients and refractive index changes of a typical GaAs/Al x Ga 1 x As spherical quantum dot are theoretically investigated,using the Luttinger-Kohn effective mass equation.So,electronic structure and optical properties of the system are studied by means of the matrix diagonalization technique and compact density matrix approach,respectively.Finally,effects of an impurity,band edge non-parabolicity,incident light intensity and the dot size on the linear,the third-order nonlinear and the total optical absorption coefficients and refractive index changes are investigated.Our results indicate that,the magnitudes of these optical quantities increase and their peaks shift to higher energies as the influences of the impurity and the band edge non-parabolicity are considered.Moreover,incident light intensity and the dot size have considerable effects on the optical absorption coefficients and refractive index changes.  相似文献   

9.
The optical absorption coefficients and the changes in the refractive index in GaAs/AlGaAs parabolic quantum dots(QDs) with applied electric and magnetic fields are studied in detail. Analytical expressions for the linear and nonlinear intersubband absorption coefficients and refractive index changes are obtained by using a compact density matrix approach and an iterative procedure. Finally, the calculated results show the incident optical intensity, the frequencies of the confined potential of the QDs and the applied electric and magnetic fields have a great influence on the optical absorption coefficients and refractive index changes in this system.  相似文献   

10.
The combined effects of hydrostatic pressure, presence and absence of hydrogenic donor impurity are investigated on the linear and nonlinear optical absorption coefficients and refractive index changes of a GaAs/Ga1−xAlxAs nanowire superlattice. The wave functions and corresponding eigenvalues are calculated using finite difference method in the framework of effective mass approximation. Analytical expressions for the linear and third order nonlinear optical absorption coefficients and refractive index changes are obtained by means of compact-density matrix formalism. The linear and third order nonlinear absorption coefficient and refractive index changes are presented as a function of photon energy for different values of hydrostatic pressure, incident photon intensity and relaxation time in the presence and absence of hydrogenic donor impurity. It is found that the linear and third order nonlinear absorption coefficients, refractive index changes and resonance energy are quite sensitive to the presence of impurity and applied hydrostatic pressure. Moreover, the saturation in optical spectrum and relaxation time can be adjusted by increasing pressure in presence of impurity whereas the effect of hydrostatic pressure is negligible in the case of absence of hydrogenic impurity.  相似文献   

11.
In this study, the changes in the refractive index and intersubband optical absorption coefficients in symmetric double semi-V-shaped quantum wells are investigated theoretically. The energy levels and the envelope wave functions of an electron confined in finite potential double semi-V-shaped quantum wells are calculated within the effective-mass approximation framework. The analytical expressions of the refractive index and intersubband optical absorption coefficients are obtained using the compact density matrix approach. The effects of the incident optical intensity and structure parameters, such as the barrier width, confinement potential and the well width, on the optical properties of the double semi-V-shaped quantum wells are investigated. The numerical results show that both the incident optical intensity and structure paremeters have a great effect on the optical characteristics of these structures.  相似文献   

12.
Optical absorption coefficients and refractive index changes associated with intersubband transition in typical GaAs/AlxGa1−xAs spherical quantum dots are theoretically investigated, both in the presence and in the absence of the conduction band non-parabolicity effect. In this regard, the effect of band non-parabolicity on the eigenvalues and eigenfunctions of the dot has been performed using the Luttinger-Kohn effective mass equation. Also, by means of the compact-density-matrix approach the linear and nonlinear optical absorption coefficients and refractive index changes have been calculated. The results show that magnitudes of these quantities are decreased and the peaks are shifted to the lower energies as the influence of band non-parabolicity is considered.  相似文献   

13.
Optical absorption coefficients and refractive index changes associated with intersubband transition in a parabolic cylinder quantum dot are theoretically investigated. In this regard, the electronic structure of the dot is studied using the one band effective mass theory, and by means of the compact-density matrix approach the linear and nonlinear optical absorption coefficients and refractive index changes are calculated. The effects of the size of the dot, optical intensity and electromagnetic field polarization on the optical absorption coefficient and refractive index changes are investigated. It is found that absorption and refractive index changes are strongly affected not only by the size of the dot but also by optical intensity and the electromagnetic field polarization.  相似文献   

14.
Linear and nonlinear intersubband optical absorption and refractive index change in asymmetrical semi-exponential quantum wells are theoretically investigated within the framework of the compact–density–matrix approach and iterative method. The wave functions are obtained by using the effective mass approximation. The energy levels are obtained by numerical method. It is found that the optical absorption coefficients and refractive index changes are strongly affected not only by σ   and U0U0, but also by the incident optical intensity.  相似文献   

15.
In this study, the changes in the optical absorption coefficients and the refractive index in a V-shaped quantum well have investigated theoretically. Within the effective mass approximation, the electronic structure of the V-shaped quantum well is calculated by numerical methods from the Schrödinger equation. Optical properties are obtained using the compact density-matrix approach. In the present work, the linear, third-order nonlinear and total absorption and refractive index changes investigated as a function of the quantum well width, the incident optical intensity, strengths of the magnetic and electric fields. Our results show that the magnetic and electric fields strengths, the quantum well width and incident optical intensity have a great effect on the optical characteristics of these structures.  相似文献   

16.
In the present theoretical study, the linear and third-order nonlinear optical absorption coefficients have been calculated in GaAs/Ga1−x Al x As inverse parabolic quantum wells (single and double) subjected to an external electric field. Our calculations are based on the potential morphing method in the effective mass approximation. The systematic theoretical investigation contains results with all possible combinations of the involved parameters, as quantum well width, quantum barrier width, Al concentration at each well center and magnitude of the external electric field. Our results indicate that in most cases investigated, the increase of the electric field blue-shifts the peak positions of the total absorption coefficient. In all cases studied it became apparent that the incident optical intensity considerably affects the total absorption coefficient.  相似文献   

17.
In the present work, we intend to study the pressure effect on optical properties of spherical quantum dots by using the modified Gaussian potential. In this regard, the linear, nonlinear and total intersubband absorption coefficients and refractive index changes are investigated for different hydrostatic pressures. According to the results obtained from the present work, it is deduced that: (i) the linear, nonlinear and total refractive index changes decrease and shift towards higher energies when the pressure increases and (ii) the linear, nonlinear and total absorption coefficients increase and shift towards higher energies by increasing the pressure.  相似文献   

18.
利用量子力学中的密度矩阵算符理论和迭代方法,导出莫尔斯(Morse)势阱中线性和三阶非线性光折射率改变的解析表达式,并以典型的GaAs/AlGaAs Morse势阱为例进行数值计算。数值结果表明,随着入射光强度增强,总的折射率改变将减少;随着势阱参数a的增大,总的折射率改变将减小;而随着载流子浓度的增加,总的折射率改变将增加。结果表明要获得较大的折射率改变,则需选取较小的入射光强度,较小的参数a,较大的载流子浓度,从而为实验研究提供理论依据。  相似文献   

19.
In this work electronic structure, the linear and the third-order nonlinear refractive index changes as well as optical absorption coefficients of a two-dimensional hexagonal quantum dot are investigated. Energy eigenvalues and eigenfunctions of the system are calculated by the matrix diagonalization technique, and optical properties are also obtained using the compact density matrix approach. As our results indicate, both the dot size and the confinement potential have a great influence on the intersubband energy intervals, the transition probability and consequently, the linear and the third-order nonlinear refractive index changes and optical absorption coefficients.  相似文献   

20.
The linear and the nonlinear intersubband optical absorption in the symmetric double semi-parabolic quantum wells are investigated for typical GaAs/AlxGa1−xAs. Energy eigenvalues and eigenfunctions of an electron confined in finite potential double quantum wells are calculated by numerical methods from Schrödinger equation. Optical properties are obtained using the compact density matrix approach. In this work, the effects of the barrier width, the well width and the incident optical intensity on the optical properties of the symmetric double semi-parabolic quantum wells are investigated. Our results show that not only optical incident intensity but also structure parameters such as the barrier and the well width really affect the optical characteristics of these structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号