首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 873 毫秒
1.
We report the experimental determination of the (13)C(alpha) chemical shift tensors of Ala, Leu, Val, Phe, and Met in a number of polycrystalline peptides with known X-ray or de novo solid-state NMR structures. The 700 Hz dipolar coupling between (13)C(alpha) and its directly bonded (14)N permits extraction of both the magnitude and the orientation of the shielding tensor with respect to the C(alpha)-N bond vector. The chemical shift anisotropy (CSA) is recoupled under magic-angle spinning using the SUPER technique (Liu et al., J. Magn. Reson. 2002, 155, 15-28) to yield quasi-static chemical shift powder patterns. The tensor orientation is extracted from the (13)C-(14)N dipolar modulation of the powder line shapes. The magnitudes and orientations of the experimental (13)C(alpha) chemical shift tensors are found to be in good accord with those predicted from quantum chemical calculations. Using these principal values and orientations, supplemented with previously measured tensor orientations from (13)C-(15)N and (13)C-(1)H dipolar experiments, we are able to predict the (phi, psi, chi(1)) angles of Ala and Val within 5.8 degrees of the crystallographic values. This opens up a route to accurate determination of torsion angles in proteins based on shielding tensor magnitude and orientation information using labeled compounds, as well as the structure elucidation of noncrystalline organic compounds using natural abundance (13)C NMR techniques.  相似文献   

2.
The determination of backbone conformations in powdered peptides using 13C and 15N shift tensor information is explored. The 13C and 15N principal shift values in natural abundance 13C and 15N melanostatin (L-Pro-L-Leu-Gly amide) are measured using the FIREMAT technique. Furthermore, the orientation of the C-N bond in the 13C shift principal axis system for the backbone carbons is obtained from the presence of the 13C-14N dipolar coupling. The Ramachandran angles for the title compound are obtained from solid-state NMR data by comparing the experimentally determined shift tensor information to systematic theoretical shielding calculations on N-formyl-L-amino acid-amide models. The effects of geometry optimization and neglect of intermolecular interactions on the theoretical shielding values in the model compounds are investigated. The sets of NMR derived Ramachandran angles are assembled in a set of test structures that are compared to the available single-crystal X-ray structure. Shift tensor calculations on the test structures and the X-ray structure are used to further assess the importance of intermolecular interactions when the shift tensor is used as a structural probe in powdered peptides.  相似文献   

3.
Knowledge of (13)C chemical shift anisotropy (CSA) tensors in nucleotide bases is important for interpretation of NMR relaxation data in terms of local dynamic properties of nucleic acids and for analysis of residual chemical shift anisotropy (RCSA) resulting from weak alignment. CSA tensors for protonated nucleic acid base carbons have been derived from measurements on a uniformly (13)C-enriched helical A-form RNA segment and a helical B-form DNA dodecamer at natural (13)C abundance. The magnitudes of the derived CSA principal values are tightly restricted by the magnetic field dependencies of the (13)C transverse relaxation rates, whereas the tensor orientation and asymmetry follow from quantitative measurements of interference between (13)C-{(1)H} dipolar and (13)C CSA relaxation mechanisms. Changes in the chemical shift between the isotropic and aligned states, Deltadelta, complement these measurements and permit cross-validation. The CSA tensors are determined from the experimental Deltadelta values and relaxation rates, under the assumption that the CSA tensor of any specific carbon in a given type of base is independent of the base position in either the RNA or DNA helix. However, the experimental data indicate that for pyrimidine C(6) carbons in A-form RNA the CSA magnitude is considerably larger than in B-form DNA. This result is supported by quantum chemical calculations and is attributed in part to the close proximity between intranucleotide C(6)H and O(5)' atoms in RNA. The magnitudes of the measured CSA tensors, on average, agree better with previous solid-state NMR results obtained on powdered nucleosides than with prior results from quantum chemical calculations on isolated bases, which depend rather strongly on the level of theory at which the calculations are carried out. In contrast, previously computed orientations of the chemical shift tensors agree well with the present experimental results and exhibit less dependence on the level of theory at which the computations are performed.  相似文献   

4.
15N chemical shielding parameters are reported for central glycyl residues in crystallographically characterized tripeptides with alpha-helix, beta-strand, polyglycine II (3(1)-helix), and extended structures. Accurate values of the shielding components (2-5 ppm) are determined from MAS and stationary spectra of peptides containing [2-(13)C,(15)N]Gly. Two dipolar couplings, (1)H-(15)N and (13)C(alpha)-(15)N, are used to examine (15)N shielding tensor orientations in the molecular frame and the results indicate that the delta(11), delta(33) plane of the shielding tensor is not coincident with the peptide plane. The observed isotropic shifts, which vary over a range of 13 ppm, depend on hydrogen bonding (direct and indirect) and local conformation. Tensor spans, delta(span) = delta(11) - delta(33), and their deviations from axial symmetry, delta(dev) = delta(22) - delta(33), vary over a larger range and are grouped according to 2 degrees structure. Augmented by previously reported (13)C(alpha) shielding parameters, a prediction scheme for the 2 degrees structure of glycyl residues in proteins based on shielding parameters is proposed.  相似文献   

5.
For the first time, coordination geometry and structure of metal binding sites in biologically relevant systems are studied using chemical shift parameters obtained from solid-state NMR experiments and quantum chemical calculations. It is also the first extensive report looking at metal-imidazole interaction in the solid state. The principal values of the (113)Cd chemical shift anisotropy (CSA) tensor in crystalline cadmium histidinate and two different cadmium formates (hydrate and anhydrate) were experimentally measured to understand the effect of coordination number and geometry on (113)Cd CSA. Further, (13)C and (15)N chemical shifts have also been experimentally determined to examine the influence of cadmium on the chemical shifts of (15)N and (13)C nuclei present near the metal site in the cadmium-histidine complex. These values were then compared with the chemical shift values obtained from the isostructural bis(histidinato)zinc(II) complex as well as from the unbound histidine. The results show that the isotropic chemical shift values of the carboxyl carbons shift downfield and those of amino and imidazolic nitrogens shift upfield in the metal (Zn,Cd)-histidine complexes relative to the values of the unbound histidine sample. These shifts are in correspondence with the anticipated values based on the crystal structure. Ab initio calculations on the cadmium histidinate molecule show good agreement with the (113)Cd CSA tensors determined from solid-state NMR experiments on powder samples. (15)N chemical shifts for other model complexes, namely, zinc glycinate and zinc hexaimidazole chloride, are also considered to comprehend the effect of zinc binding on (15)N chemical shifts.  相似文献   

6.
In this study the components of the nitrogen chemical shift (CS) tensor are examined for a series of para substituted N,N-dimethylaniline derivatives. This is done through measurement of the 15N NMR spectra of powder samples and through quantum chemical calculations on the isolated molecules. Experiments and calculations show that the isotropic CS, delta(iso), decreases with increasing electron donating ability of the para substituent, in agreement with previous solution studies. More importantly, this study shows that this decrease in the isotropic (solution) CS is due to decreasing values of the CS tensor component delta(11) and component delta(33). The component delta(22) is essentially invariant to the electron donating/withdrawing ability of the para substituent. Through Ramsey's theory of nuclear magnetic shielding, it can be seen that the variation in delta(11) and delta(33), and hence delta(iso), is due to changes in the n-pi* and the sigma-pi* energy gaps in N,N-dimethylaniline. This, in turn, is a result of the change in the energy of the pi* molecular orbital with change in the pi-electron donating ability of the para substituent. The effects of nitrogen inversion on the components of the nitrogen CS tensor components are also discussed. This study also shows the feasibility of performing 15N cross-polarization experiments on nonspinning powder samples at natural isotopic abundance.  相似文献   

7.
This paper presents novel measurements and calculations of the olefinic (13)C chemical shift tensor principal values in several metal diene complexes. The experimental values and the calculations show shifts as large as 70 ppm with respect to the values in the parent olefinic compounds. These shifts are highly anisotropic, with the largest ones observed in the less shielded principal components and the smallest ones in the most shielded principal components of the tensor. The orientations of the principal components of the tensors remain, within 10 degrees , at their directions in ethylene and other olefinic compounds. The calculations, performed using the GIAO method and the LanDZ pseudopotential basis set, show good agreement with the experiments, and were used to establish definite evidence for the existence of a Cl-bridge structure in the bicyclo[2.2.1]hepta-2,5-diene (BCHD)dichlororuthenium(II) polymer.  相似文献   

8.
A series of l and dl forms of O-phosphorylated amino acids (serine, threonine, tyrosine) have been studied by using solid-state multinuclear NMR spectroscopy and ab initio calculations. Principal elements of the (13)C and (31)P chemical shielding tensors have been measured and discussed in relation to zwitterionic structures and intermolecular contacts. DFT calculations have been compared with experimental data showing their ability to reproduce experimentally obtained tensor values in this challenging class of compounds. The changes of orientation of (31)P chemical shielding tensor with respect to the molecular frame in the presence of hydrogen bonds have been revealed and discussed on the ground of theoretical calculations. The measurements of internuclear P...P distances, based on Zeeman magnetization exchange between (31)P spins with differing chemical shielding tensor orientations, were exploited for a clear distinction between enantiomers and racemates.  相似文献   

9.
Chemical shift calculations are carried out for the quinoline carbons in 1,8-bis(2-isopropyl-4-quinolyl)naphthalene, 2-isopropylquinoline, amodiaquine, chloroquine, and quinine and the N-oxide of each compound. Ab initio calculations of the isotropic shielding values are in agreement with experimental chemical shifts. The calculations indicate that changes to the principal components of the shielding tensor upon N-oxidation are similar for each compound. Carbons 2, 4, 8, and 10 are largely shielded in each case as the nitrogen is oxidized. For C2, C4, and C10, this shielding is due to a large change in sigma11 and/or sigma22, indicating a change in pi-electron density. For C8, the large shielding change is due mainly to a change in sigma33, indicating a change in sigma-electron density. Upon examination and comparison of the calculated 13C shielding tensor components in the antimalarial drugs versus those in unsubstituted quinolines, it is found that amodiaquine and chloroquine have increased pi-electron density in the ring containing the amino side chain and quinine has increased pi-electron density in the opposite ring, containing the methoxy substituent.  相似文献   

10.
The solid state 13C NMR spectra of bicyclo[1.1.0]butane and [1.1.1]propellane have been measured at low temperature. The orientation of the principal axes of the chemical shielding tensor have been determined with ab initio calculations based on the IGLO (Individual Gauge for Localized Orbitals) method when they are not determined by symmetry. Excellent agreement is obtained between the calculated and experimental principal values of the shielding tensor when basis sets containing polarization functions are used. In most cases the agreement is such that the calculated values are within the experimental error.Part 3 of this series: Ref. [7]  相似文献   

11.
The effects of deprotonation on the (13)C and (31)P chemical shielding tensors of L-O-phosphoserine are revealed by using solid-state NMR spectroscopy and ab initio calculations. The characteristic changes in some principal elements of the (13)C and (31)P chemical shift tensors have been detected during successive steps of deprotonation of carboxyl, phosphate, and amide functional groups. The calculations carried out in a polarizable continuum taking into account the effects of the surroundings have shown their ability to reproduce correctly the changes of the principal values induced by deprotonation and to provide precious information, which is very difficult to obtain experimentally, about the concurrent changes in the orientation of chemical shielding tensors in the molecular frame. The experimentally observed subtle effects related to the deprotonation-induced modifications of intermolecular contacts involving hydrogen bonding as well as the influence of counterions on the (13)C and (31)P principal elements of the chemical shift tensors are also discussed.  相似文献   

12.
We present a new method for determining the orientation of chemical shift tensors in polycrystalline solids with site resolution and demonstrate its application to the determination of the Calpha chemical shift tensor orientation in a model peptide with beta-sheet torsion angles. The tensor orientation is obtained under magic angle spinning by modulating a recoupled chemical shift anisotropy (CSA) pattern with various dipolar couplings. These dipolar-modulated chemical shift patterns constitute the indirect dimension of a 2D spectrum and are resolved according to the isotropic chemical shifts of different sites in the direct dimension. These dipolar-modulated CSA spectra are equivalent to the projection of a 2D static separated-local-field spectrum onto its chemical shift dimension, except that its dipolar dimension is multiplied with a modulation function. Both (13)C-(1)H and (13)C-(15)N dipolar couplings can modulate the CSA spectra of the Calpha site in an amino acid and yield the relative orientations of the chemical shift principal axes to the C-H and C-N bonds. We demonstrate the C-H and C-N modulated CSA experiments on methylmalonic acid and N-tBoc-glycine, respectively. The MAS results agree well with the results of the 2D separated-local-field spectra, thus confirming the validity of this MAS dipolar-modulation approach. Using this technique, we measured the Val Calpha tensor orientation in N-acetylvaline, which has beta-sheet torsion angles. The sigma(11) axis is oriented at 158 degrees (or 22 degrees) from the C-H bond, while the sigma(22) axis is tilted by 144 degrees (or 36 degrees) from the C-N bond. Both the orientations and the magnitude of this chemical shift tensor are in excellent agreement with quantum chemical calculations.  相似文献   

13.
31P MAS-NMR of Phosphorus Oxide Sulfides — Experimental Determination and Quantumchemical Calculation of Chemical Shift Tensors By high resolution solid state 31P MAS NMR and analysis of spinning sidebands the principal values of the chemical shift tensors in the series P4O6Sn with n = 0–4 have been determined. The orientations of the corresponding principal axes within the molecules have been derived. All magnetic shielding tensors show axial symmetry within the limits of experimental error. Thus the orientation of the shielding tensor within the molecules can be deduced indirectly. This information is usually not accessible for polycrystalline samples. The principal values of the tensor of the trivalent phosphorus atoms in P4O6S seem to deviate considerably from those of the other compounds with respect to anisotropy and axiality. The reason is a dynamic effect: the rotation of the molecule about the PS bond. All experimental results are confirmed by ab-initio calculations using the IGLO method.  相似文献   

14.
15N shielding tensors were determined for the central peptide groups in GGV, AGG, and APG by single-crystal NMR. We find that the angle between the downfield component (delta11) and the N-H or the N-C(delta) (pro) bonds is in the range of 20-23 degrees and in accord with previous solid-state NMR measurements. However, AGG, unlike APG or GGV, has a distorted peptide plane, and delta11 lies approximately in the plane of N, C(alpha), and H rather than in the peptide plane defined by heavy atoms. Accurate orientations of delta22 and delta33 were determined, and the usual assumption that delta22 is along the peptide normal was found only in APG which has a highly nonaxial tensor. More generally, delta22 and delta33 are rotated about the delta11 axis (36 degrees in GGV). These results are compared with DFT calculations to gain a structural understanding of the effects of intermolecular interactions on shielding tensor principal components and orientations. Trimeric clusters containing H-bonded neighbors predict the orientations of the principal components within 2-3 degrees, but calculated principal components are less quantitative. Possible reasons for this disagreement are explored.  相似文献   

15.
We have used ab initio quantum chemical techniques to compute the (13)C(alpha) and (13)C(beta) shielding surfaces for the 14 amino acids not previously investigated (R. H. Havlin et al., J. Am. Chem. Soc. 1997, 119, 11951-11958) in their most popular conformations. The spans (Omega = sigma(33) - sigma(11)) of all the tensors reported here are large ( approximately 34 ppm) and there are only very minor differences between helical and sheet residues. This is in contrast to the previous report in which Val, Ile and Thr were reported to have large ( approximately 12 ppm) differences in Omega between helical and sheet geometries. Apparently, only the beta-branched (beta-disubstituted) amino acids have such large CSA span (Omega) differences; however, there are uniformly large differences in the solution-NMR-determined CSA (Deltasigma = sigma(orth) - sigma(par)) between helices and sheets in all amino acids considered. This effect is overwhelmingly due to a change in shielding tensor orientation. With the aid of such shielding tensor orientation information, we computed Deltasigma values for all of the amino acids in calmodulin/M13 and ubiquitin. For ubiquitin, we find only a 2.7 ppm rmsd between theory and experiment for Deltasigma over an approximately 45 ppm range, a 0.96 slope, and an R(2) = 0.94 value when using an average solution NMR structure. We also report C(beta) shielding tensor results for these same amino acids, which reflect the small isotropic chemical shift differences seen experimentally, together with similar C(beta) shielding tensor magnitudes and orientations. In addition, we describe the results of calculations of C(alpha), C(beta), C(gamma)1, C(gamma)2, and C(delta) shifts in the two isoleucine residues in bovine pancreatic trypsin inhibitor and the four isoleucines in a cytochrome c and demonstrate that the side chain chemical shifts are strongly influenced by chi(2) torsion angle effects. There is very good agreement between theory and experiment using either X-ray or average solution NMR structures. Overall, these results show that both C(alpha) backbone chemical shift anisotropy results as well as backbone and side chain (13)C isotropic shifts can now be predicted with good accuracy by using quantum chemical methods, which should facilitate solution structure determination/refinement using such shielding tensor surface information.  相似文献   

16.
The principal (13)C chemical-shift values for the pi-[TCNE](2)(2-) dimer anion within an array of counterions have been measured to understand better the electronic structure of these atypical chemical species in several related TCNE-based structures. The structure of pi-[TCNE](2)(2-) is unusual as it contains two very long C-C bond lengths (ca. 2.9 Angstroms) between the two monomeric units and has been found to exist as a singlet state, suggestive of a (1)A(1g) (b(2u)(2)b(1g)(0)) electronic configuration. A systematic study of several oxidation states of [TCNE](n) (n = 0, 1-, 2-) was conducted to determine how the NMR chemical-shift tensor values change as a function of electronic structure and to understand the interactions that lead to spin-pairing of the monomer units. The density functional theory (DFT) calculated nuclear shielding tensors are correlated with the experimentally determined principal chemical-shift values. Such theoretical methods provide information on the tensor magnitudes and orientations of their principal tensor components with respect to the molecular frame. Both theoretical and experimental ethylenic chemical-shielding tensors reveal high sensitivity in the component, delta(perpendicular), lying in the monomer molecular plane and perpendicular to the pi-electron plane. This largest shift dependence on charge density is observed to be about -111 ppm/e(-) for delta(perpendicular). The component in the molecular plane but parallel to the central C=C bond, delta(parallel), exhibits a sensitivity of approximately -43 ppm/e(-). However, the out-of-plane component delta'(perpendicular) shows a minimal dependence of -2.6 ppm/e(-) on the oxidation state (n) of [TCNE](n). These relative values support the claim that it is changes within the ethylenic pi-electrons and not the sigma-electrons that best account for the dramatic variations in bonding and shift tensors in this series of compounds. Concerning the intraion bonding, relatively weak Wiberg bond orders between the two monomeric components of the dimer correlate with the long bonds linking the two [TCNE(*)](-) monomers. The chemical-shift tensors for the cyano group, compared to the ethylene shifts, exhibit a reduced sensitivity on the TCNE oxidation state. The experimental principal chemical-shift components agree (within typical errors) with the calculated quantum mechanical shieldings used to correlate the bonding. The embedded ion model (EIM) was used to investigate the typically large electrostatic lattice potential in these ionic materials. Chemical-shielding principal values calculated with the EIM model differ from experiment by +/-3.82 ppm on average, whereas in the absence of an electrostatic field model, the experimental and theoretical results agree by +/-4.42 ppm, which is only a modest increase in error considering the overall ionic magnitudes associated with the tensor variations. Apparently, the effects of the sizable long-range electrostatic fields cancel when the shifts are computed because of lattice symmetry.  相似文献   

17.
13C chemical shift tensor data from 2D FIREMAT spectra are reported for 4,7-di-t-butylacenaphthene and 4,7-di-t-butylacenaphthylene. In addition, calculations of the chemical shielding tensors were completed at the B3LYP/6-311G** level of theory. While the experimental tensor data on 4,7-di-t-butylacenaphthylene are in agreement with theory and with previous data on polycyclic aromatic hydrocarbons, the experimental and theoretical data on 4,7-di-t-butylacenaphthene lack agreement. Instead, larger than usual differences are observed between the experimental chemical shift components and the chemical shielding tensor components calculated on a single molecule of 4,7-di-t-butylacenaphthene, with a root mean square (rms) error of +/-7.0 ppm. The greatest deviation is concentrated in the component perpendicular to the aromatic plane, with the largest value being a 23 ppm difference between experiment and theory for the 13CH2 carbon delta11 component. These differences are attributed to an intermolecular chemical shift that arises from the graphitelike, stacked arrangement of molecules found in the crystal structure of 4,7-di-t-butylacenaphthene. This conclusion is supported by a calculation on a trimer of molecules, which improves the agreement between experiment and theory for this component by 14 ppm and reduces the overall rms error between experiment and theory to 4.0 ppm. This intermolecular effect may be modeled with the use of nuclei independent chemical shieldings (NICS) calculations and is also observed in the isotropic 1H chemical shift of the CH2 protons as a 4.2 ppm difference between the solution value and the solid-state chemical shift measured via a 13C-1H heteronuclear correlation experiment.  相似文献   

18.
A systematic computational investigation was carried out to characterize the 17O, 14N and 2H electric field gradient, EFG, as well as 17O, 15N, 13C and 1H chemical shielding tensors in the anhydrous chitosan crystalline structure. To include the hydrogen-bonding effects in the calculations, the most probable interacting molecules with the target molecule in the crystalline phase were considered through a hexameric cluster. The computations were performed with the B3LYP method and 6-311++G(d,p) and 6-31++G(d,p) standard basis sets using the Gaussian 98 suite of programs. Calculated EFG and chemical shielding tensors were used to evaluate the 17O, 14N and 2H nuclear quadrupole resonance, NQR, and 17O, 15N, 13C and 1H nuclear magnetic resonance, NMR, parameters in the hexameric cluster, which are in good agreement with the available experimental data. The difference between the calculated NQR and NMR parameters of the monomer and hexamer cluster shows how much hydrogen bonding interactions affect the EFG and chemical shielding tensors of each nucleus. These results indicate that both O(3)-H(33)...O(5-3) and N-H(22)...O(6-4) hydrogen bonding have a major influence on NQR and NMR parameters. Also, the quantum chemical calculations indicate that the intra- and intermolecular hydrogen bonding interactions play an essential role in determining the relative orientation of EFG and chemical shielding principal components in the molecular frame axes.  相似文献   

19.
Knowledge of the orientation of the nitrogen-15 chemical shift anisotropy (CSA) tensor is critical for a variety of experiments that provide information on protein structure and dynamics in the solid and solution states. Unfortunately, the methods available for determining the orientation of the CSA tensor experimentally have inherent limitations. Rotation studies of a single crystal provide complete information but are tedious and limited in applicability. Solid-state NMR studies on powder samples can be applied to a greater range of samples but suffer from ambiguities in the results obtained. Density functional gauge-including-atomic-orbitals (GIAO) calculations of the orientations of (15)N CSA tensors in peptides are presented here as an independent source of confirmation for these studies. A comparison of the calculated (15)N CSA orientations with the available experimental values from single-crystal and powder studies shows excellent agreement after a partial, constrained optimization of some of the crystal structures used in the calculation. The results from this study suggest that the orientation as well as the magnitudes of (15)N CSA tensors may vary from molecule to molecule. The calculated alpha(N) angle varies from 0 degrees to 24 degrees with the majority in the 10 degrees to 20 degrees range and the beta(N) angle varies from 17 degrees to 24 degrees in good agreement with most of the solid-state NMR experimental results. Hydrogen bonding is shown to have negligible effect on the orientation of (15)N CSA tensor in accordance with recent theoretical predictions. Furthermore, it is demonstrated that the orientation of the (15)N CSA can be calculated accurately with much smaller basis sets than is needed to calculate the chemical shift, suggesting that the routine application of ab initio calculations to the determination of (15)N CSA tensor orientations in large biomolecules might be possible.  相似文献   

20.
Three flavonoids of pharmaceutical importance-baicalein, baicalin, and wogonoside-were isolated from a Chinese medicinal plant Scutellaria baicalensis Georgi and studied by 13C NMR in solution and solid state. Two-dimensional (2D) NMR spectroscopy in the liquid phase and dipolar dephasing (DD) experiments in magic-angle spinning (MAS) spectra enabled the assignment of 13C resonances. The cross-polarization (CP) time constants T(CH) and relaxation times T(H) (1rho) were obtained from the variable-contact time experiments. The principal elements of the 13C chemical shift tensor were determined in the spectra recorded under slow sample spinning (2 kHz) using phase-adjusted spinning sideband (PASS)-2D NMR technique, and were verified by density functional theory gauge-independent atomic orbital (DFT GIAO) calculations of shielding constants. Analysis of the 13C delta(ii) and comparison with shielding parameters calculated for different conformers of compounds 1-3 enabled the selection of the most reliable geometry in the solid phase. In all three compounds, an intramolecular hydrogen bond C5--OH...=C4 is formed; the existence of baicalein and baicalin with 'anticlockwise' orientation of OH groups is more probable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号