首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamics of the F atom reaction with propyne (CH(3)CCH) has been investigated using a universal crossed molecular beam apparatus. Two reaction channels have been clearly observed: H+C(3)H(3)F and HF+C(3)H(3). The substitution of F for H occurs mainly via a complex formation mechanism, producing reaction products with some contribution from a direct reaction mechanism. The HF product, however, appears to be dominantly forward scattered relative to the F atom beam direction, suggesting that the HF formation occurs via a direct abstraction mechanism. Branching ratios for the two observed reaction channels are also determined. The H formation channel is found to be the major reaction pathway, while the HF formation channel is also significant. From the measurements of DF versus HF products from the F atom reaction with deuterated propyne, the H atom picked up by the F atom in the reaction with normal propyne seems to come mostly from the CH(3) group. In addition, the H atom produced in the H atom formation channel appears to be mostly from the CH(3) group with some contribution from the CCH group.  相似文献   

2.
The photodissociation of jet-cooled alpha-fluorotoluene and 4-fluorotoluene at 193 and 248 nm was studied using vacuum ultraviolet (vuv) photoionization/multimass ion imaging techniques as well as electron impact ionization/photofragment translational spectroscopy. Four dissociation channels were observed for alpha-fluorotoluene at both 193 and 248 nm, including two major channels C6H5CH2F-->C6H5CH2 (or C7H7)+F and C6H5CH2F-->C6H5CH (or C7H6)+HF and two minor channels C6H5CH2F-->C6H5CHF+H and C6H5CH2F-->C6H5+CH2F. The vuv wavelength dependence of the C7H7 fragment photoionization spectra indicates that at least part of the F atom elimination channel results from the isomerization of alpha-fluorotoluene to a seven-membered ring prior to dissociation. Dissociation channels of 4-fluorotoluene at 193 nm include two major channels C6H4FCH3-->C6H4FCH2+H and C6H4FCH3-->C6H4F+CH3 and two minor channels C6H4FCH3-->C6H5CH2 (or C7H7)+F and C6H4FCH3-->C6H5CH (or C7H6)+HF. The dissociation rates for alpha-fluorotoluene at 193 and 248 nm are 3.3 x 10(7) and 5.6 x 10(5) s(-1), respectively. The dissociation rate for 4-fluorotoluene at 193 nm is 1.0 x 10(6) s(-1). An ab initio calculation demonstrates that the barrier height for isomerization from alpha-fluorotoluene to a seven-membered ring isomer is much lower than that from 4-fluorotoluene to a seven-membered ring isomer. The experimental observed differences of dissociation rates and relative branching ratios between alpha-fluorotoluene and 4-fluorotoluene may be explained by the differences in the six-membered ring to seven-membered ring isomerization barrier heights, F atom elimination threshold, and HF elimination threshold between alpha-fluorotoluene and 4-fluorotoluene.  相似文献   

3.
The radical-molecule reaction F+propene (CH2CHCH3) was studied in detail by using the Becke's three parameter Lee-Yang-Parr-B3LYP/6-311G(d,p) and coupled cluster with single, double, and triple excitationsCCSD(T)/6-311+G(2d,2p). It is shown that F+propene reaction mainly occurs through complex-formation mechanism: F attacks the double bond of propene leading to the formation of complex 1 and complex 2. As the two radical complexes are metastable, they can quickly dissociate to H+C3H5F, CH3+C2H3F and HF+C3H5. Based on the ab initio calculations, the CH3+C2H3F is the main channel, and the H elimination and HF forming channels also provide some contribution to products. The calculated values are in good agreement with the recently reported experimental results.  相似文献   

4.
The O((1)D) + C(3)H(8) reaction has been reinvestigated using the universal crossed molecular beam method. Three reaction channels, CH(3) + C(2)H(4)OH, C(2)H(5) + CH(2)OH, and OH + C(3)H(7), have been observed. All three channels are significant in the title reaction with the C(2)H(5) formation process to be the most important, while the CH(3) formation and the OH formation channels are about equal. Product kinetic energy distributions and angular distributions have been determined for the three reaction channels observed. The oxygen-containing radicals in the CH(3) and C(2)H(5) formation pathways show forward-backward symmetric angular distribution relative to the O atom beam, while the OH product shows a clearly forward angular distribution. These results indicate that the OH formation channel seems to exhibit different dynamics from the CH(3) and C(2)H(5) channels.  相似文献   

5.
In this report, the dynamics of the F+SiH4 reaction has been studied using the universal crossed molecular beam method. Angular resolved time-of-flight spectra have been measured for all reaction products in a single set of experiments. Two different reaction channels have been observed: HF+SiH3 and SiH3F+H. Product angular distributions as well as energy distributions were determined for these two product channels. Experimental results show that the HF product is forward scattered relative to the F atom beam direction, while the SiH3F product is backward scattered relative the F atom beam direction, suggesting that two reaction channels proceed with distinctive reaction dynamics. The relative branching ratios of the two channels have also been estimated.  相似文献   

6.
The absolute photoionization cross section of C(2)H(5) has been measured at 10.54 eV using vacuum ultraviolet (VUV) laser photoionization. The C(2)H(5) radical was produced in situ using the rapid C(2)H(6) + F → C(2)H(5) + HF reaction. Its absolute photoionization cross section has been determined in two different ways: first using the C(2)H(5) + NO(2) → C(2)H(5)O + NO reaction in a fast flow reactor, and the known absolute photoionization cross section of NO. In a second experiment, it has been measured relative to the known absolute photoionization cross section of CH(3) as a reference by using the CH(4) + F → CH(3) + HF and C(2)H(6) + F → C(2)H(5) + HF reactions successively. Both methods gave similar results, the second one being more precise and yielding the value: σ(C(2)H(5))(ion) = (5.6 ± 1.4) Mb at 10.54 eV. This value is used to calibrate on an absolute scale the photoionization curve of C(2)H(5) produced in a pyrolytic source from the C(2)H(5)NO(2) precursor, and ionized by the VUV beam of the DESIRS beamline at SOLEIL synchrotron facility. In this latter experiment, a recently developed ion imaging technique is used to discriminate the direct photoionization process from dissociative ionization contributions to the C(2)H(5)(+) signal. The imaging technique applied on the photoelectron signal also allows a slow photoelectron spectrum with a 40 meV resolution to be extracted, indicating that photoionization around the adiabatic ionization threshold involves a complex vibrational overlap between the neutral and cationic ground states, as was previously observed in the literature. Comparison with earlier photoionization studies, in particular with the photoionization yield recorded by Ruscic et al. is also discussed.  相似文献   

7.
Theoretical studies of F atom reaction with trans-1,3-butadiene were carried out at the CCSD(T)/6-311G(d,p)/B3LYP/6-311G(d,p) levels. Energies and structures for all reactants, products and transition states were determined. Two reaction pathways involving the formation of the complexes CH2CHCHFCH2 and CH2CHCHCH2F were found in this reaction. Theoretical results suggest that the H atom channel observed in previous crossed beam experiment occurs likely via these two long-lived complex formation pathways. For the complex CH2CHCHFCH2 pathway, another reaction channel (C2H3+C2H3F) is also accessible. Relative importance of the C2H3+C2H3F channel versus the H formation channel via the same reaction pathway has also been estimated, suggesting that it would be difficult to observe the C2H3+C2H3F channel in a crossed molecular beam experiment. Theoretical analysis also shows that the HF formation proceeds via direct abstraction mechanisms, though it is likely a minor process in this reaction.  相似文献   

8.
Using photofragment translational spectroscopy and tunable vacuum-ultraviolet ionization, we measured the time-of-flight spectra of fragments upon photodissociation of vinyl fluoride (CH2CHF) at 157 and 193 nm. Four primary dissociation pathways--elimination of atomic F, atomic H, molecular HF, and molecular H2--are identified at 157 nm. Dissociation to C2H3 + F is first observed in the present work. Decomposition of internally hot C2H3 and C2H2F occurs spontaneously. The barrier heights of CH2CH --> CHCH + H and cis-CHCHF --> CHCH + F are evaluated to be 40+/-2 and 44+/-2 kcal mol(-1), respectively. The photoionization yield spectra indicate that the C2H3 and C2H2F radicals have ionization energies of 8.4+/-0.1 and 8.8+/-0.1 eV, respectively. Universal detection of photoproducts allowed us to determine the total branching ratios, distributions of kinetic energy, average kinetic energies, and fractions of translational energy release for all dissociation pathways of vinyl fluoride. In contrast, on optical excitation at 193 nm the C2H2 + HF channel dominates whereas the C2H3 + F channel is inactive. This reaction C2H3F --> C2H2 + HF occurs on the ground surface of potential energy after excitation at both wavelengths of 193 and 157 nm, indicating that internal conversion from the photoexcited state to the electronic ground state of vinyl fluoride is efficient. We computed the electronic energies of products and the ionization energies of fluorovinyl radicals.  相似文献   

9.
Photodissociation dynamics of 1,2-butadiene at 157 nm   总被引:1,自引:0,他引:1  
Photodissociation dynamics of 1,2-butadiene at 157 nm has been investigated using a molecular beam apparatus based on photoionization using vacuum ultraviolet synchrotron radiation. Six dissociation pathways have been observed. The observed channels are C4H5+H, C4H4+H2, C3H3+CH3, C2H3+C2H3, C2H4+C2H2, and C4H4+H+H. Among all the dissociation channels, the C3H3+CH3 channel is found to be the dominant process. The product kinetic energy distributions of all dissociation channels have been determined from simulating the experimental time-of-flight spectra. Relative branching ratios for all observed dissociation channels were also estimated based on all detected products.  相似文献   

10.
Early flowtube studies showed that (CH(3))(2)S (DMS) reacted very rapidly with F(2); hydrogen sulfide (H(2)S), however, did not. Recent crossed molecular beam studies found no barrier to the reaction between DMS and F(2) to form CH(2)S(F)CH(3) + HF. At higher collision energies, a second product channel yielding (CH(3))(2)S-F + F was identified. Both reaction channels proceed through an intermediate with an unusual (CH(3))(2)S-F-F bond structure. Curiously, these experimental studies have found no evidence of direct F(2) addition to DMS, resulting in (CH(3))(2)SF(2), despite the fact that the isomer in which both fluorines occupy axial positions is the lowest energy product. We have characterized both reactions, H(2)S + F(2) and DMS + F(2), with high-level ab initio and generalized valence bond calculations. We found that recoupled pair bonding accounts for the structure and stability of the intermediates present in both reactions. Further, all sulfur products possess recoupled pair bonds with CH(2)S(F)CH(3) having an unusual recoupled pair bond dyad involving π bonding. In addition to explaining why DMS reacts readily with F(2) while H(2)S does not, we have studied the pathways for direct F(2) addition to both sulfide species and found that (for (CH(3))(2)S + F(2)) the CH(2)S(F)CH(3) + HF channel dominates the potential energy surface, effectively blocking access to F(2) addition. In the H(2)S + F(2) system, the energy of the transition state for formation of H(2)SF(2) lies very close to the H(2)SF + F asymptote, making the potential pathway a roaming atom mechanism.  相似文献   

11.
The QCISD and QCISD(T) quantum chemical methods have been used to characterize the energetics of various possible mechanisms for the formation of HCF2+ from the bond-forming reaction of CF3(2+) with H2. The stationary points on four different pathways leading to the product combinations HCF2+ + H+ + F and HCF2+ + HF+ have been calculated. All four pathways begin with the formation of a collision complex [H2-CF3]2+, followed by an internal hydrogen atom migration to give HC(FH)F2(2+). In two of the mechanisms, immediate charge separation of HC(FH)F2(2+) via loss of either HF+ or a proton, followed by loss of an F atom, yields the experimentally observed bond-forming product HCF2+. For the other two mechanisms, internal hydrogen rearrangement of HC(FH)F2(2+) to give C(FH)2F(2+), followed by charge separation, yields the product CF2H+. This product can then overcome a 2.04 eV barrier to rearrange to the HCF2+ isomer, which is 1.80 eV more stable. All four calculated mechanisms are in agreement with the isotope effects and collision energy dependencies of the product ion cross sections that have been previously observed experimentally following collisions between CF3(2+) and H2/D2. We find that in this open-shell system, CCSD(T) and QCISD(T) T1-diagnostic values of up to 0.04 are acceptable. A series of angularly resolved crossed-beam scattering experiments on collisions of CF3(2+) with D2 have also been performed. These experiments show two distinct channels leading to the formation of DCF2+. One channel appears to correspond to the pathway leading to the ground state 1DCF2+ + D+ + F product asymptote and the other to the 3DCF2+ + D+ + F product asymptote, which is 5.76 eV higher in energy. The experimental kinetic energy releases for these channels, 7.55 and 1.55 eV respectively, have been determined from the velocities of the DCF2+ product ion and are in agreement with the reaction mechanisms calculated quantum chemically. We suggest that both of these observed experimental channels are governed by the reaction mechanism we calculate in which charge separation occurs first by loss of a proton, without further hydrogen atom rearrangement, followed by loss of an F atom to give the final products 1DCF2+ + D+ + F or 3DCF2+ + D+ + F.  相似文献   

12.
A laser ablation-molecular beam/reflectron time-of-flight mass spectrometric technique was used to investigate the ion-molecule reactions that proceed within Ti+(ROH)n (R = C2H5, CF3CH2) heterocluster ions. The mass spectra exhibit a major sequence of cluster ions with the formula Ti+(OR)m(ROH)n (m = 1, 2), which is attributed to sequential insertions of Ti+ into the O-H bond of C2H5OH or CF3CH2OH molecules within the heteroclusters, followed by H eliminations. The TiO+ and TiOH+ ions produced from the reactions of Ti+ with C2H5OH are interpreted as arising from insertion of Ti+ into the C-O bond, followed by C2H5 and C2H6 eliminations, respectively. When Ti+ reacted with CF3CH2OH, by contrast, considerable contributions from TiFOH+, TiF2+, and TiF2OH+ ions were observed in the mass spectrum of the reaction products, indicating that F and OH abstractions are the dominant product channels. Ab initio calculations of the complex of Ti+ with 2,2,2-trifluoroethanol show that the minimum energy structure is that in which Ti+ is attached to the O atom and one of the three F atoms of 2,2,2-trifluoroethanol, forming a five-membered ring. Isotope-labeling experiments additionally show that the chemical reactivity of heterocluster ions is greatly influenced by the presence of fluorine substituents and cluster size. The reaction energetics and formation mechanisms of the observed heterocluster ions are discussed.  相似文献   

13.
A direct dynamics simulation at the B3LYP/6-311+G(d,p) level of theory was used to study the F- + CH3OOH reaction dynamics. The simulations are in excellent agreement with a previous experimental study (J. Am. Chem. Soc. 2002, 124, 3196). Two product channels, HF + CH2O + OH- and HF + CH3OO-, are observed. The former dominates and occurs via an ECO2 mechanism in which F- attacks the CH3- group, abstracting a proton. Concertedly, a carbon-oxygen double bond is formed and OH- is eliminated. Somewhat surprisingly this is not the reaction path, predicted by the intrinsic reaction coordinate (IRC), which leads to a deep potential energy minimum for the CH2(OH)2...F- complex followed by dissociation to HF + CH2(OH)O-. None of the direct dynamics trajectories followed this path, which has an energy release of -63 kcal/mol and is considerably more exothermic than the ECO2 path whose energy release is -27 kcal/mol. Other product channels not observed, and which have a lower energy than that for the ECO2 path, are F- + CO + H2 + H2O (-43 kcal/mol), F- + CH2O + H2O (-51 kcal/mol), and F- + CH2(OH)2 (-60 kcal/mol). Formation of the CH3OOH...F- complex, with randomization of its internal energy, is important, and this complex dissociates via the ECO2 mechanism. Trajectories which form HF + CH3OO- are nonstatistical events and, for the 4 ps direct dynamics simulation, are not mediated by the CH3OOH...F- complex. Dissociation of this complex to form HF + CH3OO- may occur on longer time scales.  相似文献   

14.
Reactions of CH(3)F have been surveyed systematically at room temperature with 46 different atomic cations using an inductively coupled plasma/selected-ion flow tube tandem mass spectrometer. Rate coefficients and product distributions were measured for the reactions of fourth-period atomic ions from K(+) to Se(+), of fifth-period atomic ions from Rb(+) to Te(+) (excluding Tc(+)), and of sixth-period atomic ions from Cs(+) to Bi(+). Primary reaction channels were observed corresponding to F atom transfer, CH(3)F addition, HF elimination, and H(2) elimination. The early-transition-metal cations exhibit a much more active chemistry than the late-transition-metal cations, and there are periodic features in the chemical activity and reaction efficiency that maximize with Ti(+), As(+), Y(+), Hf(+), and Pt(+). F atom transfer appears to be thermodynamically controlled, although a periodic variation in efficiency is observed within the early-transition-metal cations which maximizes with Ti(+), Y(+), and Hf(+). Addition of CH(3)F was observed exclusively (>99%) with the late-fourth-period cations from Mn(+) to Ga(+), the fifth-period cations from Ru(+) to Te(+), and the sixth-period cations from Hg(+) to Bi(+) as well as Re(+). Periodic trends are observed in the effective bimolecular rate coefficient for CH(3)F addition, and these are consistent with expected trends in the electrostatic binding energies of the adduct ions and measured trends in the standard free energy of addition. HF elimination is the major reaction channel with As(+), while dehydrogenation dominates the reactions of W(+), Os(+), Ir(+), and Pt(+). Sequential F atom transfer is observed with the early-transition-metal cations, with the number of F atoms transferred increasing across the periodic table from two to four, maximizing at four for the group 5 cations Nb(+)(d(4)) and Ta(+)(d(3)s(1)), and stopping at two with V(+)(d(4)). Sequential CH(3)F addition was observed with many atomic cations and all of the metal mono- and multifluoride cations that were formed.  相似文献   

15.
The F + CH(3)NHNH(2) reaction mechanism is studied based on ab initio quantum chemistry methods as follows: the minimum energy paths (MEPs) are computed at the UMP2/6-311++G(d,p) level; the geometries, harmonic vibrational frequencies, and energies of all stationary points are predicted at the same level of theory; further, the energies of stationary points and the points along the MEPs are refined by UCCSD(T)/6-311++g(3df,2p). The ab initio study shows that, when the F atom approaches CH(3)NHNH(2), the heavy atoms, namely N and C atoms, are the favorable combining points. For the two N atoms, two prereaction complexes with C(s) symmetry are generated and there exists seven possible subsequent reaction routes, of which routes 1, 2, 5, and 7 are the main channels. Routes 1, 2, and 5 are associated with HF elimination, with H from the amino group or imido group, and route 7 involves the N-N bond break. Routes 3 and 6 with relation to HF elimination with H from methyl, and route 4 involved the C-N bond break, are all energetically disfavored. For the C atom, the attack of F results in the break of the C-N bond and the products are CH(3)F + NHNH(2). This route is very competitive.  相似文献   

16.
The singlet potential energy surface for the dissociation of benzene dication has been explored, and its three major dissociation channels have been studied: C6H6(2+) --> C3H3(+) + C3H3(+), C4H3(+) + C2H3(+), and C5H3(+) + CH3(+). The calculated energetics suggest that the products will be formed with considerable translational energy because of the Coulomb repulsion between the charged fragments. The calculated energy release in the three channels shows a qualitative agreement with the experimentally observed kinetic energy release. The formation of certain intermediates is found to be common to the three dissociation channels.  相似文献   

17.
The reaction of F(2P) with acetone has been studied theoretically using ab initio quantum chemistry methods and transition state theory. The potential energy surface was calculated at the G3MP2 level using the MP2/6-311G(d,p) optimized structures. Additionally, to ensure the accuracy of the calculations, optimizations with either larger basis set (e.g., MP2/G3MP2Large) or higher level electron correlation [e.g., CCSD/ 6-311G(d,p)] were also performed. It has been revealed that the F + CH3C(O)CH3 reaction proceeds via two pathways: (1) the direct hydrogen abstraction of acetone by F gives the major products HF + CH3C(O)CH2; (2) the addition of F atom to the >C=O double bond of acetone and the subsequent C-C bond cleavage gives the minor products CH3 + CH3C(O)F. All other product channels are of no importance due to the occurrence of significant barriers. Both abstraction and addition appear to be barrierless processes. Variational transition state model and multichannel RRKM theory were employed to calculate the temperature- and pressure-dependent rate constants and branching ratios. The predicted rate constants for the abstraction channel and the yields of HF + CH3C(O)CH3 and CH3 + CH3C(O)F are both in good agreement with the experimental data at 295 K and 700 Torr. A negative temperature dependence of the overall rate constants was predicted at temperatures below 500 K.  相似文献   

18.
A detailed experimental and theoretical investigation of the first-reported barrierless reaction between two closed-shell molecules [J. Chem. Phys. 127, 101101 (2007)] is presented. The translational energy and angular distributions of two product channels, HF+CH(2)SFCH(3) and F+CH(3)SFCH(3), determined at several collision energies, have been analyzed to reveal the dynamics of the studied reaction. Detailed analysis of the experimental and computational results supports the proposed reaction mechanism involving a short-lived F-F-S(CH(3))(2) intermediate, which can be formed without any activation energy. Other possible reaction mechanisms have been discriminated. The decay of the intermediate and competition between the two product channels have been discussed.  相似文献   

19.
三氟化氯和环氧丙烷反应的理论研究   总被引:2,自引:0,他引:2  
应用密度泛函理论对三氟化氯和环氧丙烷反应产生C3H5O和C1F2自由基的机理进行了研究。在B3PW91/6-31+G(d,p)水平优化了12个不同反应通道上各驻点(反应物、中间体、过渡态和产物) 的几何构型,并计算了它们的振动频率和零点振动能。采用CCSD(T)/6-31+ G(d,p) // B3PW91/6-31+G(d,p)单点能计算方法求得各物种的能量,并作了零点能校正。计算结果表明,三氟化氯和环氧丙烷反应可经过不同的反应路径引发C3H5O自由基和C1F2自由基,其中,三氟化氯呈对称的F原子与环氧丙烷的C(1)上与CH3在同一侧的上的H原子结合的活化能最低,仅为16.81 kJ/mol。  相似文献   

20.
A new three-dimensional cubic thorium-organic framework material, Th3F5[(C10H14)(CH2CO2)2]3(NO3) has been synthesized under mild hydrothermal reaction conditions using Th(NO3)4 x 6H2O, 1,3-adamantanediacetic acid, and aqueous HF as reagents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号