首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Optimum conditions for synthesizing monoclinic and triclinic Mg2B2O5 compounds by high-temperature solid-state reactions were investigated. Mixtures composed of boric acid and magnesium oxide at MgO:B2O3 mole ratios of 1:0.25, 1:0.5 and 1:1.5 were heated for 1 hour at temperatures between 600–1050°C and the formed phases were identified by XRD analysis. Monoclinic Mg2B2O5 was formed by heating at 850°C for 4 hours together with minimum amounts of triclinic Mg2B2O5, while triclinic Mg2B2O5 was formed as a single phase at 1050°C for the same reaction time. The products obtained at optimum conditions were subjected to a series of tests to determine their chemical compositions, particle size distributions, surface area values, IR spectra and TG/DTA patterns.   相似文献   

2.
Water-soluble Mn3O4 nanocrystals have been prepared through thermal decomposition in a high temperature boiling solvent, 2-pyrrolidone. The final product was characterized with XRD, SEM, TEM, FTIR and Zeta Potential measurements. Average crystallite size was calculated as ∼15 nm using XRD peak broadening. TEM analysis revealed spherical nanoparticles with an average diameter of 14±0.4 nm. FTIR analysis indicated that 2-pyrrolidone coordinates with the Mn3O4 nanocrystals only via O from the carbonyl group, thus confining their growth and protecting their surfaces from interaction with neighboring particles.   相似文献   

3.
The relative enthalpies of melts in the system KF - K2NbF7 were measured by drop-calorimetry at the temperatures 1058, 1140 and 1208 K as a function of composition. Heat capacities of melted mixtures and enthalpies of mixing were determined using the experimental data. The molar heat capacity of melts diverges slightly from additivity. The molar enthalpy of mixing of melts shows small negative deviation from ideality which decreases with decreasing temperature. The thermal effect at mixing was assigned predominantly to association reactions producing more complex fluoroniobate anions.   相似文献   

4.
Methylcellulose (MC) / SiO2 organic / inorganic hybrid materials have been prepared from MC and methyltriethoxysilane or ethyltrimethoxysilane, and characterized by XRD, FTIR and AFM. XRD showed peak shifts. FTIR shows intermolecular hydrogen bonding between MC and SiO2. AFM depicts surface roughness which depends on the silica precursor and MC content.   相似文献   

5.
It was found that oximes undergo deoximation in the presence of the H2O2aq-HBraq system to form ketones and bromo ketones. This reaction provided the basis for the synthesis of dibromo ketones in yields varying from 40% to 94%. This method is environmentally friendly, sustainable, and easy to perform. The results of this investigation extend the potential of the use of oximes for the protection of carbonyl group, thus offering the ability to perform not only conventional deoximation but also the subsequent bromination of ketones. The reaction is easily scaled up and dibromo ketones can be prepared in gram amounts.   相似文献   

6.
The polycrystalline Ho4Ni11In20 was obtained by arc-melting of the elements. The subsequent high temperature procedure was used for single crystal growth. Crystal structure of the compound was investigated by X-ray single crystal method: U4Ni11Ga20 type, C 2/m, a = 22.4528(17), b = 4.2947(3), c = 16.5587(13) Å, β = 124.591(5)°, R1 = 0.0276, wR2 = 0.0493 for 1989 independent reflections with [I>2σ(I)].The structure is composed of three-dimensional network from Ni and In atoms in which Ho atoms fill distorted pentagonal channels. Open image in new window  相似文献   

7.
8.
Magnesium-based composites of 75 wt% Mg — (10, 15, 20) wt% Mg2Ni0.7Co0.3 — (15, 10, 5) wt% C mechanically activated for 30 min under argon in a planetary mill, were obtained. Their absorption-desorption characteristics were investigated under a pressure P = 1 MPa and temperatures of 623, 573, 473, 423 and 373 K. Desorption was carried out at 623 K and 573 K and a pressure of 0.15 MPa. All the three composites showed improved hydriding kinetics as compared to pure magnesium. However, the desorption temperature was somewhat higher than needed for practical application.   相似文献   

9.
Microcomposites consisting of TiO2 (or Ce-doped TiO2) and ThO2 (0.5–2% of the TiO2 mass) are produced by sol-gel synthesis of TiO2 in presence of ThO2. X-ray diffraction study reveals the effects of ThO2 (compared to the ThO2-free TiO2, obtained by the same method) on the anatase interplanar distances, crystallites size and phase composition. The photocatalytic tests in presence of the composites under UV irradiation reveal an increase of the Malachite Green degradation rate constant. The effect depends on the Th relative content, temperature of annealing of the catalyst and addition of other doping agent. The highest photocatalytic activity is observed for TiO2 obtained at 550°C and containing 1% ThO2. The composite exhibits activity in dark, also. The presence of Ce4+ ions is not an obligatory requirement for the realization of the ThO2 effect. The reported results suggest that the radioactivity of the Th and/or its decay products is one of the main factors responsible for the increased photocatalytic activity of TiO2.   相似文献   

10.
Diamond D5 is the name proposed by Diudea for hyper-diamonds having their rings mostly pentagonal. Within D5, in crystallographic terms: the mtn structure, known in clathrates of type II, several substructures can be defined. In the present work, the structural stability of such intermediates/fragments appearing in the construction/destruction of D5 net was investigated using molecular dynamics simulation. Calculations were performed using an empirical many-body potential energy function for hydrocarbons. It has been found that, at normal temperature, the hexagonal hyper-rings are more stable while at higher temperature, the pentagonal ones are relatively more resistant against heat treatment.   相似文献   

11.
A sensitive and convenient method for the determination of trace europium ions using an oscillating chemical reaction involving Ce(IV) - KBrO3 - acetone - oxalic acid - H2SO4 was proposed. The results indicated that the changes in oscillating period (T) was linearly proportional to the negative logarithmic concentration of Eu3+ (-log C) in the range of 1.41 × 10−8 ˜ 1.41 × 10−4 mol L−1 (r = 0.9982) with a detection limit of 1.04 × 10−9 mol L−1. The recoveries were limited to the range of 99.5% to 100.8%. Under the same conditions, other rare earth ions did not interfere with the determination of Eu3+. In addition, a perturbation mechanism was also discussed briefly.   相似文献   

12.
A simple sol-gel process is proposed for synthesizing SnO2 nanopowders utilizing normal propanol and isopropanol mixture instead of just using normal alcohols such as ethanol, propanol or butanol for Sol preparation. No surfactant was used in this Sol preparation process. The structure of sol is studied by FT-IR-ATR technique. On altering propanol to isopropanol ratio, three different nanopowders were obtained. X-ray powder diffraction, high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction pattern (SAED) and BET techniques were used to characterize prepared powders. Results show that smaller grain size was obtained via altering alcohols ratio. In addition, Merck commercial SnO2 powder was also used as a reference material for comparing purposes; because it has nanometer scale (ca. 60 nm). HRTEM images show that obtained nanopowders were polycrystalline and their average diameters fall into the range of 6–80 nm. Finally, the effect of alkoxide ligand size through sol-gel synthesis on product particle size is discussed.   相似文献   

13.
We successfully synthesized tin dioxide nanoparticles with polyhedral morphology via an ethylene glycol assisted sol-gel approach. The structural characteristics of three tin dioxide samples were investigated after being thermally treated at 400°C, 600°C and 800°C. X-ray diffraction (XRD) patterns clearly show the formation of single phase tin dioxide nanoparticles, with crystallite size of 6–20 nm, in good correlation with Fourier transform infrared (FTIR) spectra. Transmission electron microscopy (TEM) analysis confirms the formation of 6nm polyhedral nanoparticles for the 400°C sample. Ultraviolet-visible (UV-Vis) and photoluminescence (PL) spectra suggest a high concentration of oxygen vacancies. The oxygen vacancy concentration increases with temperature, due to the combined action of the formation of VO and the energetic O compensation. X-ray photoelectron spectroscopy (XPS) analysis also confirms the formation of single phase tin dioxide and the presence of oxygen vacancies in good agreement with UV-VIS and PL data.
  相似文献   

14.
Benzimidazole, benzimidazoles diversely substituted at position 2, and 5,6-dimethylbenzimidazole have been alkylated at N 1 with ketonic Mannich bases derived from acetophenones, acetylnaphthalenes, 2-acetylthiophene and 1-tetralone to afford a series of novel 1-(3-oxopropyl)benzimidazoles. The reduction of these transamination products with NaBH4 in methanol produced the corresponding 1-(3-hydroxypropyl)benzimidazoles in excellent yields.   相似文献   

15.
In this work, the synthesis of magnetite nanoparticles by two variant chemical coprecipitation methods that involve reflux and aging conditions was investigated. The influence of the synthesis conditions on particle size, morphology, magnetic properties and protein adsorption were studied. The synthesized magnetite nanoparticles showed a spherical shape with an average particle size directly influenced by the synthesis technique. Particles of average size 27 nm and 200 nm were obtained. When the coprecipitation method was used without reflux and aging, the smallest particles were obtained. Magnetite nanoparticles obtained from both methods exhibited a superparamagnetic behavior and their saturation magnetization was particle size dependent. Values of 67 and 78 emu g−1 were obtained for the 27 nm and 200 nm magnetite particles, respectively. The nanoparticles were coated with silica, aminosilane, and silica-aminosilane shell. The influence of the coating on protein absorption was studied using Bovine Serum Albumin (BSA) protein.   相似文献   

16.
This work presents a nano-Al2O3 solid phase extraction technique for the determination of ultra-trace amounts of inorganic selenium species in aqueous systems using ion chromatography inductively coupled plasma-mass spectrometry (IC-ICP-MS). In this experiment, the inorganic selenium species were successfully extracted on a nano-Al2O3 solid phase column and then quantitative eluted with a 100 mmol L−1 NaOH solution. Extraction conditions such as solvent identity, solvent concentration, solvent volume, solvent pH and salt addition were optimized. Under the optimum extraction conditions (elute solvent: 100 mmol L−1 NaOH, solvent volume: 4 mL, pH: 7.0), low detection limits (Se (IV): 6 ng L−1, Se (VI): 11 ng L−1; RSD<5.0%) and good linear range (0.5–100 ng mL−1, R2 > 0.999) were obtained for all of the analytes. Good spiked recoveries over the range of 80–98% were obtained by applying the proposed method on real environmental water samples. These results indicated that this method is very sensitive and reliable when monitoring trace levels of inorganic selenium species in aqueous samples.   相似文献   

17.
Mn3O4 powders have been produced from Electrolytic Manganese Residue (EMR). After leaching of EMR in sulfuric acid, MnSO4 solution containing various ions was obtained. Purifying the solution obtained and then adding aqueous alkali to the purified MnSO4 solution, Mn(OH)2 was prepared. Two methods were employed to produce Mn3O4. One way was oxidation of Mn(OH)2 in aqueous phase under atmosphere pressure to obtain Mn3O4. The other way was roasting Mn(OH)2 precursors in the range of 500°C to 700°C. The prepared samples were investigated by using several techniques including X-ray powder diffraction (XRD), Fourier Transformation Infra-Red (FTIR) spectra, and Brunauer-Emmett-Teller (BET) specific surface area instrument. Particle distribution and magnetic measurements were carried out on laser particle size analyzer, vibrating sample magnetometer (VSM). Through XRD, FTIR and determination of total Mn content (TMC), the products prepared were confirmed to be a single phase Mn3O4. BET specific surface areas can reach to 32 m2 g−1. The results indicated that products synthesized by aqueous solution oxidation method had higher specific surface areas and smaller particle size than those prepared by means of roasting. However the products prepared using the above two methods showed no obvious differences in magnetic property.   相似文献   

18.
In this study, a novel and effective suspension polymerization has been employed to prepare functional magnetic porous SrFe12O19/P(St-DVB-MAA) microspheres in the presence of bilayer surfactants (sodium dodecyl benzene sulfonate (SDBS) and oleic acid (OA)) coated on micro-size magnetic SrFe12O19. This was achieved by pre-polymerizing the organic phase, which contained co-monomers, porogens and treated magnetic particles, at 65°C for 0.5 h under ultrasound conditions. Aqueous solutions containing a dispersion agent were then added to effect suspension polymerization. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and magnetic property measurement system (MPMS) were used to characterize the functional magnetic porous microspheres. The results show that the microparticles are well shaped with a uniform size distribution of about 0.5 ∼ 0.7 mm and the surfaces of the microspheres have many micro-pores with an average diameter of 0.533 μm. There are carboxyl groups (−COOH) on the surface of the microspheres to the extent of 0.65 mmol g−1, as determined by conductometric titration. According to the XRD spectra, iron oxide consists mainly of SrFe12O19 which reveals hexahedral structure. The content of magnetic SrFe12O19 reaches 17.81% (by mass), and the microspheres have good heat resistance. The magnetic porous microspheres are ferromagnetic with high residual magnetization and coercivity, 21.59 emu g−1 and 4.13 kOe, respectively. The saturation magnetisation is around 42.85 emu g−1.   相似文献   

19.
During the diazo-coupling reaction, nucleophilic displacement of a nitro group was also observed. This was the main reaction (1→7) when the starting amine bore either a chlorine or methoxy group at the para position (1b–c). The newly prepared compounds (7) might serve as convenient building blocks in synthesis of some heterocycles.   相似文献   

20.
Ab initio calculations, including natural charge population and natural resonance theory analyses, have been carried out to study the two-way effects between hydrogen bonds (H-bonds) and the intramolecular resonance effect by using the H-bonded complexes of ring compounds containing the H2N-C=Y moiety (C=Y bond is contained in the six-membered or five-membered rings) with water as models. The amino groups in the four monomers of ring compounds (FAYs, Y represents the heavy atoms in the substituent groups, =CH, =N, =SiH, and =P, respectively) can all serve as H-bond donors (HD) and H-bond acceptors (HA) to form stable H-bonded complexes with water. The HD H-bond and resonance effect enhance each other (positive two-way effects) whereas the HA H-bond and resonance effect weaken each other (negative two-way effects). The resonance effect in FAY(1) (C=Y bond is contained in the six-membered rings) is weaker than that in formamide, and those in FAY(2) and FAY(3) (C=Y bonds are contained in the five-membered rings). The two-way effects between H-bond and resonance effect exist in the H-bonded complexes of ring compounds containing the H2N-C=Y moiety with water.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号