首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A set S of vertices in a graph G is a total dominating set of G if every vertex is adjacent to a vertex in S. The total domination number γt(G) is the minimum cardinality of a total dominating set of G. The total domination subdivision number sdγt(G) of a graph G is the minimum number of edges that must be subdivided (where each edge in G can be subdivided at most once) in order to increase the total domination number. Haynes et al. (J. Combin. Math. Combin. Comput. 44 (2003) 115) showed that for any tree T of order at least 3, 1?sdγt(T)?3. In this paper, we give a constructive characterization of trees whose total domination subdivision number is 3.  相似文献   

2.
In a graph G, a vertex dominates itself and its neighbors. A subset SV(G) is a double dominating set of G if S dominates every vertex of G at least twice. The double domination numberdd(G) is the minimum cardinality of a double dominating set of G. The double domination subdivision numbersddd(G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the double domination number. In this paper first we establish upper bounds on the double domination subdivision number for arbitrary graphs in terms of vertex degree. Then we present several different conditions on G which are sufficient to imply that sddd(G)?3. We also prove that 1?sddd(T)?2 for every tree T, and characterize the trees T for which sddd(T)=2.  相似文献   

3.
Let G=(V,E) be a graph. A set SV is a restrained dominating set (RDS) if every vertex not in S is adjacent to a vertex in S and to a vertex in V?S. The restrained domination number of G, denoted by γr(G), is the minimum cardinality of an RDS of G. A set SV is a total dominating set (TDS) if every vertex in V is adjacent to a vertex in S. The total domination number of a graph G without isolated vertices, denoted by γt(G), is the minimum cardinality of a TDS of G.Let δ and Δ denote the minimum and maximum degrees, respectively, in G. If G is a graph of order n with δ?2, then it is shown that γr(G)?n-Δ, and we characterize the connected graphs with δ?2 achieving this bound that have no 3-cycle as well as those connected graphs with δ?2 that have neither a 3-cycle nor a 5-cycle. Cockayne et al. [Total domination in graphs, Networks 10 (1980) 211-219] showed that if G is a connected graph of order n?3 and Δ?n-2, then γt(G)?n-Δ. We further characterize the connected graphs G of order n?3 with Δ?n-2 that have no 3-cycle and achieve γt(G)=n-Δ.  相似文献   

4.
Let k be a positive integer and G be a connected graph. This paper considers the relations among four graph theoretical parameters: the k-domination number γk(G), the connected k-domination number ; the k-independent domination number and the k-irredundance number irk(G). The authors prove that if an irk-set X is a k-independent set of G, then , and that for k?2, if irk(G)=1, if irk(G) is odd, and if irk(G) is even, which generalize some known results.  相似文献   

5.
A vertex subset S of a digraph D is called a dominating set of D if every vertex not in S has an in-neighbor in S. A dominating set S of D is called a total dominating set of D if the subdigraph induced by S has no isolated vertices. The total domination number of D, denoted by γt(D), is the minimum cardinality of a total dominating set of D. We show that for any connected digraph D of order n≥3, γt(D)+γt(D? )≤5n/3, where D? is the converse of D. Furthermore, we characterize the oriented trees for which the equality holds.  相似文献   

6.
For a given connected graph G=(V,E), a set DtrV(G) is a total restrained dominating set if it is dominating and both 〈Dtr〉 and 〈V(G)-Dtr〉 do not contain isolate vertices. The cardinality of the minimum total restrained dominating set in G is the total restrained domination number and is denoted by γtr(G). In this paper we characterize the trees with equal total and total restrained dominating numbers and give a lower bound on the total restrained dominating number of a tree T in terms of its order and the number of leaves of T.  相似文献   

7.
Let γ(G) denote the domination number of a graph G and let CnG denote the cartesian product of Cn, the cycle of length n?3, and G. In this paper, we are mainly concerned with the question: which connected nontrivial graphs satisfy γ(CnG)=γ(Cn)γ(G)? We prove that this equality can only hold if n≡1 (mod 3). In addition, we characterize graphs which satisfy this equality when n=4 and provide infinite classes of graphs for general n≡1 (mod 3).  相似文献   

8.
9.
A set M of edges of a graph G is a matching if no two edges in M are incident to the same vertex. A set S of vertices in G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. The matching number is the maximum cardinality of a matching of G, while the total domination number of G is the minimum cardinality of a total dominating set of G. In this paper, we investigate the relationships between the matching and total domination number of a graph. We observe that the total domination number of every claw-free graph with minimum degree at least three is bounded above by its matching number, and we show that every k-regular graph with k?3 has total domination number at most its matching number. In general, we show that no minimum degree is sufficient to guarantee that the matching number and total domination number are comparable.  相似文献   

10.
A graph G with no isolated vertex is total domination vertex critical if for any vertex v of G that is not adjacent to a vertex of degree one, the total domination number of G-v is less than the total domination number of G. These graphs we call γt-critical. If such a graph G has total domination number k, we call it k-γt-critical. We characterize the connected graphs with minimum degree one that are γt-critical and we obtain sharp bounds on their maximum diameter. We calculate the maximum diameter of a k-γt-critical graph for k?8 and provide an example which shows that the maximum diameter is in general at least 5k/3-O(1).  相似文献   

11.
In this paper, we continue the study of total restrained domination in graphs, a concept introduced by Telle and Proskurowksi (Algorithms for vertex partitioning problems on partial k-trees, SIAM J. Discrete Math. 10 (1997) 529-550) as a vertex partitioning problem. A set S of vertices in a graph G=(V,E) is a total restrained dominating set of G if every vertex is adjacent to a vertex in S and every vertex of V?S is adjacent to a vertex in V?S. The minimum cardinality of a total restrained dominating set of G is the total restrained domination number of G, denoted by γtr(G). Let G be a connected graph of order n with minimum degree at least 2 and with maximum degree Δ where Δ?n-2. We prove that if n?4, then and this bound is sharp. If we restrict G to a bipartite graph with Δ?3, then we improve this bound by showing that and that this bound is sharp.  相似文献   

12.
A set S of vertices in a graph G is a total dominating set, denoted by TDS, of G if every vertex of G is adjacent to some vertex in S (other than itself). The minimum cardinality of a TDS of G is the total domination number of G, denoted by γt(G). If G does not contain K1,3 as an induced subgraph, then G is said to be claw-free. It is shown in [D. Archdeacon, J. Ellis-Monaghan, D. Fischer, D. Froncek, P.C.B. Lam, S. Seager, B. Wei, R. Yuster, Some remarks on domination, J. Graph Theory 46 (2004) 207-210.] that if G is a graph of order n with minimum degree at least three, then γt(G)?n/2. Two infinite families of connected cubic graphs with total domination number one-half their orders are constructed in [O. Favaron, M.A. Henning, C.M. Mynhardt, J. Puech, Total domination in graphs with minimum degree three, J. Graph Theory 34(1) (2000) 9-19.] which shows that this bound of n/2 is sharp. However, every graph in these two families, except for K4 and a cubic graph of order eight, contains a claw. It is therefore a natural question to ask whether this upper bound of n/2 can be improved if we restrict G to be a connected cubic claw-free graph of order at least 10. In this paper, we answer this question in the affirmative. We prove that if G is a connected claw-free cubic graph of order n?10, then γt(G)?5n/11.  相似文献   

13.
A function f:V(G)→{-1,0,1} defined on the vertices of a graph G is a minus total dominating function (MTDF) if the sum of its function values over any open neighborhood is at least one. An MTDF f is minimal if there does not exist an MTDF g:V(G)→{-1,0,1}, fg, for which g(v)?f(v) for every vV(G). The weight of an MTDF is the sum of its function values over all vertices. The minus total domination number of G is the minimum weight of an MTDF on G, while the upper minus domination number of G is the maximum weight of a minimal MTDF on G. In this paper we present upper bounds on the upper minus total domination number of a cubic graph and a 4-regular graph and characterize the regular graphs attaining these upper bounds.  相似文献   

14.
A set S of vertices in a graph G is a total dominating set (TDS) of G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a TDS of G is the total domination number of G, denoted by γt(G). A graph is claw-free if it does not contain K1,3 as an induced subgraph. It is known [M.A. Henning, Graphs with large total domination number, J. Graph Theory 35(1) (2000) 21-45] that if G is a connected graph of order n with minimum degree at least two and G∉{C3,C5, C6, C10}, then γt(G)?4n/7. In this paper, we show that this upper bound can be improved if G is restricted to be a claw-free graph. We show that every connected claw-free graph G of order n and minimum degree at least two satisfies γt(G)?(n+2)/2 and we characterize those graphs for which γt(G)=⌊(n+2)/2⌋.  相似文献   

15.
A function f:V(G)→{+1,0,-1} defined on the vertices of a graph G is a minus total dominating function if the sum of its function values over any open neighborhood is at least 1. The minus total domination number of G is the minimum weight of a minus total dominating function on G. By simply changing “{+1,0,-1}” in the above definition to “{+1,-1}”, we can define the signed total dominating function and the signed total domination number of G. In this paper we present a sharp lower bound on the signed total domination number for a k-partite graph, which results in a short proof of a result due to Kang et al. on the minus total domination number for a k-partite graph. We also give sharp lower bounds on and for triangle-free graphs and characterize the extremal graphs achieving these bounds.  相似文献   

16.
The six classes of graphs resulting from the changing or unchanging of the domination number of a graph when a vertex is deleted, or an edge is deleted or added are considered. Each of these classes has been studied individually in the literature. We consider relationships among the classes, which are illustrated in a Venn diagram. We show that no subset of the Venn diagram is empty for arbitrary graphs, and prove that some of the subsets are empty for connected graphs. Our main result is a characterization of trees in each subset of the Venn diagram.  相似文献   

17.
A graph G   with no isolated vertex is total domination vertex critical if for any vertex vv of G   that is not adjacent to a vertex of degree one, the total domination number of G-vG-v is less than the total domination number of G  . We call these graphs γtγt-critical. If such a graph G has total domination number k, we call it k  -γtγt-critical. We verify an open problem of k  -γtγt-critical graphs and obtain some results on the characterization of total domination critical graphs of order n=Δ(G)(γt(G)-1)+1n=Δ(G)(γt(G)-1)+1.  相似文献   

18.
A graph G is 2-stratified if its vertex set is partitioned into two classes (each of which is a stratum or a color class.) We color the vertices in one color class red and the other color class blue. Let F be a 2-stratified graph with one fixed blue vertex v specified. We say that F is rooted at v. The F-domination number of a graph G is the minimum number of red vertices of G in a red-blue coloring of the vertices of G such that every blue vertex v of G belongs to a copy of F rooted at v. In this paper we investigate the F-domination number when (i) F is a 2-stratified path P3 on three vertices rooted at a blue vertex which is a vertex of degree 1 in the P3 and is adjacent to a blue vertex and with the remaining vertex colored red, and (ii) F is a 2-stratified K3 rooted at a blue vertex and with exactly one red vertex.  相似文献   

19.
The problem of monitoring an electric power system by placing as few measurement devices in the system as possible is closely related to the well-known domination problem in graphs. In 1998, Haynes et al. considered the graph theoretical representation of this problem as a variation of the domination problem. They defined a set S to be a power dominating set of a graph if every vertex and every edge in the system is monitored by the set S (following a set of rules for power system monitoring). The power domination number γP(G) of a graph G is the minimum cardinality of a power dominating set of G. In this paper, we present upper bounds on the power domination number for a connected graph with at least three vertices and a connected claw-free cubic graph in terms of their order. The extremal graphs attaining the upper bounds are also characterized.  相似文献   

20.
In this paper, we study a generalization of the paired domination number. Let G=(V,E) be a graph without an isolated vertex. A set DV(G) is a k-distance paired dominating set of G if D is a k-distance dominating set of G and the induced subgraph 〈D〉 has a perfect matching. The k-distance paired domination number is the cardinality of a smallest k-distance paired dominating set of G. We investigate properties of the k-distance paired domination number of a graph. We also give an upper bound and a lower bound on the k-distance paired domination number of a non-trivial tree T in terms of the size of T and the number of leaves in T and we also characterize the extremal trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号